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FOREWORD 

This is the 1996 (QA96) version of Guidance for Data Quality Assessment, EPA QNG-9. The 
Environmental Protection Agency (EPA) has developed the Data Quality Assessment (DQA) Process as an 
important tool for project managers and planners to determine whether the type, quantity, and quality of data 
needed to support Agency decisions has been achieved. This guidance is the culmination of experiences in 
the design and statistical analyses of environmental data in different Program Offices at the EPA. Many 
elements of prior guidance, statistics, and scientific planning have been incorporated into this document. 

This document provides general guidance to organizations on assessing data quality criteria and 
performance specifications for decision making. This guidance assumes that an appropriate Quality System 
has been established and that planning for data collection has been achieved using a scientifically-based 
information collection strategy. An overview of the Agency's recommended data collection procedure, the 
DQO Process, is included in this guidance in Chapter 1 and EPA QNG-4. 

Guidance for Data Quality.Assessment is distinctly different from other guidance documents; it is 
not intended to be read in a linear or continuous fashion. The intent of the document is for it to be used as a 
"tool-box" of usefid techniques in assessing the quality of data. The overall structure of the document will 
enable the analyst to investigate many different problems using a systematic methodology. The methodology 
consists of five steps that should be iterated between them as necessary: 

(i) 
(ii) 
(iii) Select the Statistical Test 
(iv) 
(v) 

Review the Data Quality Objectives 
Conduct a Preliminary Data Review 

Verify the Assumptions of the Test 
Draw Conclusions From the Data 

This approach closely parallels the activities of a statistician analyzing a data set for the first time. L 
,/ 
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The five step procedure is not intended to be a definitive analysis of a project or problem, but provide an 
initial assessment on the "reasonableness" of the data that have been generated. Sophisticated statistical 
analysis is often not necessary unless special or unusual circumstances have been encountered in the 
generation or collection of the data or the analysis is planned in detail before the data are collected. This 
guidance is directed towards the analysis of relatively small data sets containing data that have been collected 
in a relatively simple fashion. The analysis of survey data containing large data sets or a complex sampling 
scheme is best left for statistical experts. 
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This document is a product of the collaborative effort of many quality management professionals 
throughout the EPA and the environmental community. It has been peer reviewed by the EPA Program 
Offices, Regional Offices, and Laboratories. Many valuable comments and suggestions have been 
incorporated to make it more usefbl, and additional suggestions to improve its effectiveness are sought. The 
Quality Assurance Division has the Agency lead for the development of statistical quality assurance 
techniques and future editions of this guidance will contain some of these recent developments. 

This document is one of a series of quality management guidance documents that the EPA Quality 
Assurance Division (QAD) has prepared to assist users in implementing the Agency-wide Quality System. 
Other related documents currently available or planned include: 

EPA QNG-9 i QA96 



EPA QA/G-9 

EPA QMG-4 Guidance for The Data Quality Objectives Process 

EPA QMG-4D DEFT Sofhvare for the Data Quality Objectives Process 

EPA QA-G-4R Guidance for the Data Quality Objectives Process for  Researchers (planned) 

EPA QA/G-4S Guidance for the Data Quality Objectives Process (Superfund) 

EPA QMG-5 Guidance for Quality Assurance Project Plans (drafl) 

EPA QA/G-SS Guidance on Sampling Plans (planned) 

EPA QMG-6 Guidance for the Preparation of Standard Operating Procedures (SOPS) for 
Quality-Related Documents 

EPA Q d G - 9 0  Data Quality Evaluation Statistical Tools (DataQUEST) 

The External Comment Draft EPA QMG-5, the Final Version of EPA QA/G4S, and the External 
Comment Draft EPA of QMG-4R and QMG-5s should be available before December 1996. 

This document is intended to be a "living document" that will be updated annually to incorporate new 
topics and revisions or refinements to existing procedures. Comments received on this 1996 version will be 
considered for inclusion in subsequent versions. In addition, user-friendly PC-based software (EPA QNG- 
9D) to supplement this guidance is being developed and should be available from QAD in September 1996. 

Please send your written comments on Guidance for Data Qualify Assessment to: 

Quality Assurance Division (8724) 
Office of Research and Development 
U.S. Environmental Protection Agency 
401 M Street, SW 
Washington, DC 20460 
(202) 260-5763 
FAX (202) 40 1-7002 
E-mail: ord-qad@epamail.epa.gov 

.. 
11 QA96 



TABLE OF CONTENTS 

Page 
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 -  1 

0.1 PURPOSE AND OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 1 
0.2 0 . 2 
0.3 THE 5 STEPS OF THE DQA PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 2 
0.4 INTENDED AUDIENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 3 
0.5 ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 -  4 
0.6 SUPPLEMENTAL SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 4 
0.7 SCOPE AND LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 4 

DQA AND THE DATA LIFE CYCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

STEP 1: REVIEW DQOs AND THE SAMPLlNG DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 . 1 
1.1 OVERVIEW AND ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 . 1 

1.1.1 Review Study Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 . 1 
1.1.2 Translate Objectives into Statistical Hypotheses . . . . . . . . . . . . . . . . . . . . . . .  1.1 . 2 
1.1.3 Develop Limits on Decision Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 . 2 
1.1.4 Review Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 - 3 

1.2 DEVELOPING THE STATEMENT OF HYPOTHESES . . . . . . . . . . . . . . . . . . . . . .  1.2 - 1 
1.3 DESIGNS FOR SAMPLING ENVIRONMENTAL MEDIA . . . . . . . . . . . . . . . . . . .  1.3 - 1 

1.3.1 Authoritative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 . 1 
1.3.2 Probability Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 - 1 

1.3.2.1 Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 - 1 
1.3.2.2 Sequential Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1.3.2.4 Stratified Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 - 2 

1.3 . 2 
1.3.2.3 Systematic Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 - 2 

1.3.2.5 Compositing Physical Samples . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . .  1.3 - 3 
1.3.2.6 Other Sampling Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 - 3 

STEP 2: CONDUCT A PRELIMINARY DATA REVIEW .................................. 2.1 . 1 
2.1 OVERVIEW AND ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 . 1 

2.1.1 Review Quality Assurance Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 . 1 
Calculate Basic Statistical Quantities ................................ 2.1 . 2 

2.2 STATISTICAL QUANTITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 . 1 
2.2.1 Measures of Relative Standing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 . 1 
2.2.2 Measures of Central Tendency .................................... 2.2 . 2 
2.2.3 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 . 2 
2.2.4 Measures of Association .......................................... 2.2 . 5 

2.3 GRAPHICAL REPRESENTATIONS ...................................... 2.3 . 1 
2.3.1 HistogramFrequency Plots ....................................... 2.3 . 1 
2.3.2 Stem-and-Leaf Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 3 
2.3.3 Box and Whisker Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 3 
2.3.4 RankedDataPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 .3 -6  
2.3.5 Quantile Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 8 
2.3.6 Normal Probability Plot (Quantile-Quantile Plot) . . . . . . . . . . . . . . . . . . . . .  2.3 . 10 

2.1.2 
2.1.3 GraphtheData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1-2 

... EPA QAIG-9 111 QA96 



Page 
2.3.7 Plots for Two or More Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 - 13 

2.3.7.1 Plots for Individual Data Points . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 - 13 
2.3.7.2 Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 - 14 
2.3.7.3 Extensions of the Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 - 15 
2.3.7.4 Empirical Quantile-Quantile Plot . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 - 16 

2.3.8 Plots for Temporal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 .. 18 
2.3.8.1 Time Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 - 19 
2.3.8.2 Plot of the Autocorrelation Function (Correlogram) . . . . . . . . . . . .  2.3 . 20 

2.3.9 Plots for Spatial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 23 
2.3.8.3 Multiple Observations Per Time Period . . . . . . . . . . . . . . . . . . . . . .  2.3 . 22 

2.3.9.1 Posting Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  '. . .  2.3 . 23 
2.3.9.2 Symbol Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 23 
2.3.9.3 Other Spatial Graphical Representations . . . . . . . . . . . . . . . . . . . . .  2.3 . 25 

STEP 3: SELECT THE STATISTICAL TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 . 1 
3.1 OVERVIEW AND ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 . 1 

3.1.1 Select Statistical Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 . 1 
3.1.2 Identify Assumptions Underlying the Statistical Test . . . . . . . . . . . . . . . . . . .  3.1 . 1 

3.2 TESTS OF HYPOTHESES ABOUT A SINGLE POPULATION . . . . . . . . . . . . . . .  3.2 . 1 
3.2.1 TestsforaMean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2- 1 

3.2.1.1 The One-Sample t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 . 2 
3.2.1.2 The Wilcoxon Signed Rank (One-Sample) Test for the Mean . . . . .  3.2 . 7 

3.2.2 Tests for a Proportion or Percentile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 . 11 
3.2.2.1 The One-Sample Proportion Test ............................ 3.2 . 11 

3.2.3 Tests for a Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 . 13 
3.3 TESTS FOR COMPARING TWO POPULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 . 1 

3.3.1 Comparing Two Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 . 1 
3.3.1.1 Student's Two-Sample t-Test (Equal Variances) . . . . . . . . . . . . . . . .  3.3 . 2 
3.3.1.2 Satterthwaite's Two-Sample t-Test (Unequal Variances) . . . . . . . . .  3.3 . 2 

3.3.2 Comparing Two Proportions or Percentiles ........................... 3.3 . 7 
3.3.2.1 Two-Sample Test for Proportions ............................ 3.3 . 7 
Nonparametric Comparisons of Two Population ...................... 3.3 . 10 
3.3.3.1 The Wilcoxon Rank Sum Test ............................. 3.3 . 10 
3.3.3.2 The Quantile Test ....................................... 3.3 . 14 

3.3.4 Comparing Two Medians ....................................... 3.3 . 14 

3.3.3 . 

STEP 4: VERIFY THE ASSUMPTIONS OF THE STATISTICAL TEST ..................... 4.1 . 1 
4.1 OVERVIEW AND ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 . 1 

4.1.1 Determine Approach for Verifying Assumptions ...................... 4.1 . 1 
4.1.2 Perform Tests of Assumptions ..................................... 4.1 . 2 
4.1.3 Determine Corrective Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 . 2 

4.2 . TESTS FOR DISTRIBUTIONAL ASSUMPTIONS ......................... 4.2 . 1 
4.2.1 Graphical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 . 3 
4.2.2 Shapiro-Wilk Test for Normality (the W test) ........................ 4.2 . 3 
4.2.3 Extensions of the Shapiro-Wilk Test (Filliben's Statistic) . . . . . . . . . . . . . . .  4.2 . 3 
4.2.4 Coefficient of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 . 4 
4.2.5 Coefficient of Skewness/Coefficient of Kurtosis Tests . . . . . . . . . . . . . . . . . .  4.2 . 4 

EPA Q AIG-9 iv QA96 



4.3 

4.4 

4.5 

4.6 

4.7 

Pape 
4.2.6 Range Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 . 5 
4.2.7 Goodness-of-Fit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 - 7 
4.2.8 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 - 7 
TESTS FOR TRENDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 1 
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 . 1 
4.3.2 Regression-Based Methods for Estimating and Testing for Trends . . . . . . . .  4.3 . 1 

4.3.2.1 Estimating a Trend Using the Slope of the Regression Line . . . . . . .  4.3 - 1 
4.3.2.2 Testing for Trends Using Regression Methods . . . . . . . . . . . . . . . . . .  4.3 . 2 

4.3.3 General Trend Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 3 
Sen's Slope Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 3 

4.3.3.2 Seasonal Kendall Slope Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 3 
4.3.4 Hypothesis Tests for Detecting Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 3 

4.3.4.1 One Observation per Time Period for One Sampling Location . . . . .  4.3 . 3 
4.3.4.2 Multiple Observations per Time Period for One Sampling 

Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 7 
4.3.4.3 Multiple Sampling Locations with Multiple Observations . . . . . . . .  4.3 - 7 
4.3.4.4 One Observation forOne Station with Multiple Seasons . . . . . . . . .  4.3 - 9 
A Discussion on Tests for Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 - 10 

4.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 . 1 
4.4.2 Selection of a Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 - 2 
4.4.3 Extreme Value Test (Dixon's Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 - 2 
4.4.4 Discordance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 - 4 
4.4.5 Rosner's Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 . 5 
4.4.6 Walsh's Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 . 7 
4.4.7 Multivariate Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 . 7 
TESTS FOR DISPERSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 - 1 
4.5.1 Confidence Intervals for a Single Variance . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 - 1 
4.5.2 The F-Test for the Equality of Two Variances .......................... 4.5 . 1 
4.5.3 Bartlett's Test for the Equality of Two or More Variances . . . . . . . . . . . . . . .  4.5 . 1 
4.5.4 Levene's Test for the Equality of Two or More Variances . . . . . . . . . . . . . . .  4.5 - 4 
TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.6 . 1 
4.6.1 Types of Data Transformations .................................... 4.6 . 1 
4.6.2 Reasons for Data Transformations .................................. 4.6 - 2 
VALUES BELOW DETECTION LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.7 - 1 
4.7.1 Less than 15% Nondetects - Substitution Methods ..................... 4.7 . 2 
4.7.2 Between 15-50% Nondetects ...................................... 4.7 . 2 

4.7.2.1 Cohen's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.7 . 2 
4.7.2.2 Trimmed Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.7 - 4 
4.7.2.3 Winsonzed Mean and Standard Deviation ..................... 4.7 . 5 
Greater than 50% Nondetects . Test of Proportions .................... 4.7 . 6 

4.3.3.1 

4.3.5 
OUTLIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4- 1 

4.7.3 

2 STEP 5: DRAW CONCLUSIONS FROM THE DATA ..................................... 5.1 . 1 
5.1 OVERVIEW AND ACTIVITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 . 1 

Perform the Statistical Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 . 1 
5.1.2 Draw Study Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 . 1 

Evaluate Performance of the Sampling Design . . . . . . . . . . . . . . . . . . . . . . . .  5.1 . 2 

5.1.1 

5.1.3 

EPA QNG-9 V QA96 



I . 

Page 
5.2 INTERPRETING AND COMMUNICATING THE TEST RESULTS . . . . . . . . . . . .  5.2 . 1 

5.2.2 “Accepting” vs . “Failing to Reject” the Null Hypothesis . . . . . . . . . . . . . . . .  5.2 . 1 
5.2.3 . . . . . . . . . . . . . . . . . . . . . .  5.2 . 2 
5.2.4 Impact of Bias on Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 - 2 
5.2.5 5.2 . 5 
5.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 . 6 

5.2.1 Interpretation of p-Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 - 1 

Statistical Significance vs . Practical Significance 

Quantity vs . Quality of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
“Proof of Safety” vs . “Proof of Hazard” 

LIST OF APPENDICES 
‘ Page 

A . STATISTICAL TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A . 1 
B . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B -  1 

LIST OF FIGURES 
Figure No . Pape 
0.2-1. DQA in the Context of the Data Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 .. 2 
2.3- 1 . Example of a Frequency Plot 2.3 . 1 
2.3-2. Example of a Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 1 
2.3-3. Example of a Box and Whisker Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 3 
2.3-4. Example of a Ranked Data Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 6 
2.3-5. Example of a Quantile Plot of Skewed Data 2.3 . 8 
2.3-6. Normal Probability Paper 2.3 . 12 
2.3-7. Example of Graphical Representations of Multiple Variables . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 13 
2.3-8. Example of a Scatter Plot 2.3 . 14 
2.3-9. Example of a Coded Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 15 
2.3- 10 . Example of a Parallel Coordinates Plot 2.3 . 15 
2.3- 1 1 . Example of a Matrix Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 16 
2.3.12. Example of a Time Plot Showing a Slight Downward Trend ........................... 2.3 . 19 
2.3- 13 . Example of a Correlogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 20 
2.3- 14 . Example of a Posting Plot ...................................................... 2.3 . 23 
2.3-1 5 . Example of a Symbol Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 . 24 
4.2- 1 . Graph of a Normal and Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 . 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.2-1. Illustration of Unbiased versus Biased Power Curves .................................. 5.2 . 5 

LIST OF TABLES 
Table No . Page 
1.2-1. Commonly Used Statements of Statistical Hypotheses ................................. 1.2 . 3 
4.2-1. Data for Examples in Section 4.2 .................................................. 4.2 . 1 
4.2-2. Tests for Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 . 2 
4.4-1. Recommendations for Selecting a Statistical Test for Outliers ............................ 4.4 . 2 
4.7-1. Guidelines for Analyzing Data with Nondetects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.7 . 1 

EPA QAIG-9 vi QA96 



7 INTRODUCTION 

0.1 PURPOSE AND OVERVIEW 

Data Quality Assessment (DQA) is the scientific and statistical evaluation of data to determine if 
data obtained from environmental data operations are of the right type, quality, and quantity to support their 
intended use. This guidance demonstrates how to use DQA in evaluating environmental data sets and 
illustrates how to apply some graphical and statistical tools for performing DQA. The guidance focuses 
primarily on using DQA in environmental decision making; however, the tools presented for preliminary data 
review and verifying statistical assumptions are useful whenever environmental data are used, regardless of ,  
whether the data are used for decision making. 

DQA is built on a fundamental premise: data quality, as a concept, is meaningful only when it 
. relates to the intended use of the data. , Data quality does not exist in a vacuum; one must know in what 
context a data set is to be used in order to establish a relevant yardstick for judging whether or not the data set 
is adequate. By using the DQA Process, one can answer two fundamental questions: 

~ 1. Can the decision (or estimate) be made with the desired confidence, given the quality of the data set? 

2. How well can the sampling design be expected to perform over a wide range of possible outcomes? 
If the same sampling design strategy is used again for a similar study, would the data be expected to 
support the same intended use with the desired level of confidence, particularly if the measurement 
results turned out to be higher or lower than those observed in the current study? 

The first question addresses the data user's immediate needs. For example, if the data provide 
evidence strongly in favor of one course of action over another, then the decision maker can proceed knowing 
that the decision will be supported by unambiguous data. If, however, the data do not show sufficiently 
strong evidence to favor one alternative, then the data analysis alerts the decision maker to this uncertainty. 
The decision maker now is in a position to make an informed choice about how to proceed (such as collect 
more or different data before making the decision, or proceed with the decision despite the relatively high, but 
acceptable, probability of drawing an erroneous conclusion). 

The second question addresses the data user's potential future needs. For example, if investigators 
decide to use a certain sampling design at a different location from where the design was first used, they 
should determine how well the design can be expected to perform given that the outcomes and environmental 
conditions of this sampling event will be different from those of the original event. Because environmental 
conditions will vary from one location or time to another, the adequacy of the sampling design approach 
should be evaluated over a broad range of possible outcomes and conditions. 

I 0.2 DQA AND THE DATA LIFE CYCLE 

The data life cycle (depicted in Figure 0.2-1) comprises three steps: planning, implementation, and 
assessment. During the planning phase, the Data Quality Objectives (DQO) Process (or some other 
systematic planning procedure) is used to define quantitative and qualitative criteria for determining when, 
where, and how many samples (measurements) to collect and a desired level of confidence. This information, 
along with the sampling methods, analytical procedures, and appropriate quality assurance (QA) and quality 
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3. . Select the Statistical Test: Select the most appropriate procedure for summarizing and analyzing 
the data, based on the review of the DQOs, the sampling design, and the preliminary data review. 
Identify the key underlying assumptions that must hold for the statistical procedures to be valid. 

4. Verifjl the Assumptions of the Statistical Test: Evaluate whether the underlying assumptions hold, 
or whether departures are acceptable, given the actual data and other information about the study. 

5 .  Draw Conclusions from the Data: Perform the calculations required for the statistical test and 
document the inferences drawn as a result of these calculations. If the design is to be used again, 
evaluate the performance of the sampling design. 

These five steps are presented in a linear sequence, but the DQA process is by its very nature iterative. For 
example, if the preliminary data review reveals patterns or anomalies in the data set that are inconsistent with 
the DQOs, then some aspects of the study planning may have to be reconsidered in Step 1. Likewise, if the 
underlying assumptions of the statistical test are not supported by the data, then previous steps of the DQA 
process may have to be revisited. The strength of the DQA process is that it is designed to promote an 
understanding of how well the data satisfy their intended use by progressing in a logical and efficient manner. 

Nevertheless, it should be emphasized that the DQA process cannot absolutely prove that one has or 
has not achieved the DQOs set forth during the planning phase of a study. This situation occurs because a 
decision maker can never know the true value of the item of interest. Data collection only provides the 
investigators with an estimate of this, not its true value. Further, because analytical methods are not perfect, 
they too can only provide an estimate of the true value of an environmental sample. Because investigators 
make a decision based on estimated and not true values, they run the risk of making a wrong decision 
(decision error) about the item of interest. 

0.4 INTENDED AUDIENCE 

This guidance is written for a broad audience of potential data users, data analysts, and data 
generators. Data users (such as project managers, risk assessors, or principal investigators who are 
responsible for making decisions or producing estimates regarding environmental characteristics based on 
environmental data) should find this guidance useful for understanding and directing the technical work of 
others who produce and analyze data. Data analysts (such as quality assurance specialists, or any technical 
professional who is responsible for evaluating the quality of environmental data) should find this guidance to 
be a convenient compendium of basic assessment tools. Data generators (such as analytical chemists, field 
sampling specialists, or technical support staff responsible for collecting and analyzing environmental 
samples and reporting the resulting data values) should find this guidance useful for understanding how their 
work will be used and for providing a foundation for improving the efficiency and effectiveness of the data 
generation process. 

0.5 ORGANIZATION 

This guidance presents background information and statistical tools for performing DQA. Each 
chapter corresponds to a step in the DQA Process and begins with an overview of the activities to be 
performed for that step. Following the overviews in Chapters 1,2,3, and 4, specific graphical or statistical 
tools are described and step-by-step procedures are provided along with examples. 
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0.6 SUPPLEMENTAL SOURCES 

Many of the graphical and statistical tools presented in this guidance are also implemented in a user- 
friendly, personal computer software program called DataQUEST (Data Quality Evaluation Statistical Tools, 
EPA QNG-9D). DataQUEST simplifies the implementation of DQA by automating many of the 
recommended statistical tools. DataQUEST runs on most IBM-compatible personal computers using the 
DOS operating system; see the DataQUEST User's Guide for complete information on the minimum 
computer requirements. 

The main references in this document are important works having application to environmental 
sampling and interpretation of data; most of these references are widely available within the scientific and 
environmental communities. The remaining references are either more detailed original academic bicles or 
are not as readily available to analysts. Two excellent Agency references for analyzing environmental data 
are Guidance on the Statistical Analysis of Ground- Water Monitoring Data (EPA 1992a), a useful 
compendium of statistical methods and, procedures (many of which are incorporated in this document) for the 
analysis of data generated by EPA's Office of Solid Waste; and Scout: A Data Analysis Program (EPA 
1993b), a software program for analyzing multivariate data that includes methods for identifying multivariate 
outliers, graphing the raw data, and displaying the results of principal component analysis. 

0.7 SCOPE AND LIMITATIONS 

This guidance is intended to be a convenient compendium of practical methods for the environmental 
scientist and manager. It focuses on measurement data obtained through sampling and analysis of 
contaminants in environmental media. Statistical nomenclature has been kept to the minimum and there are 
some areas that will require the input of an environmental statistician for complete analysis. The intent of the 
document is to assist the non-statistician in the review and analysis of environmental data. 

This document represents the first edition of the DQA guidance, which will be followed by annual 
updates. Readers are encouraged to send their suggestions for improvements and additions to the U.S. EPA 
Quality Assurance Division. (The address is given in the Foreword.) The annual updates will refine existing 
sections, present new tools and procedures, and expand the scope of application to additional types of 
environmental problems. 

This first edition is intended to cover most of the core topics of DQA for regulatory compliance 
decisions that involve spatially distributed contamination. Most of the tools will also be applicable to 
sampling data from hazardous waste sites or facilities under Superfund or RCRA. Many of the tools are 
generally applicable and useful for other types of problems as well. Future editions of this guidance will 
address more thoroughly the problems and issues associated with analyzing sampling data from more 
dynamic processes, such as effluent discharged to waterways and emissions dispersed in ambient air. Future 
editions will also address other topics, such as analyzing results from designed experiments and other 
research studies, as well as environmental enforcement investigations. 

This guidance is explicitly not intended to cover certain topics that are important in some areas of 
environmental protection. For example, it does not address the important area of survey sampling involving 
the administration of interviews or questionnaires to people. This document is not intended to substitute for 
more thorough treatments of fundamental statistical concepts (as found in standard textbooks), nor is it 
intended to provide a forum for publishing original research (as found in scholarly journals). 
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CHAPTER 1 

STEP 1: REVIEW DQOs AND THE SAMPLING DESIGN 

THE DATA QUALITY ASSESSMENT PROCESS 

Conduct Preliminary Data Review 

Select the Statistical Test ~e 
I v 

REVIEW DQOs AND SAMPLING DESIGN 

Pumose 
Review the DQO outputs, the sampling design, and 
any data collection documentation for consistency. If 
DQOs, have not been developed, define the statistical 
hypothesis and specify tolerable limits on decision error: 

Activities 

- Review Study Objectives . Translate Objectives into Statistical Hypothesis . Develop Limits on Decision Errors - Review Sampling Design 

z?Q!.s 
- Statements of hypotheses 
Sampling design concepts 

Step 1: Review DQOs and Sampling Design 

Review the objectives of the study. 
If DQOs have not been developed, review section 1 .I .I and define these objectives. 
If DQOs were developed, review the outputs from the DQO Process. 

Translate the data user's objectives into a statement of the primary statistical hypothesis. 
If DQOs have not been developed, review sections 1 .I .2 and 1.2, and Table 1.2-1, 
then develop a statement of the hypothesis based on the data user's objectives. 
If DQOs were developed, translate them into a statement of the primary hypothesis. 

Translate the data user's objectives into limits on Type I or Type II decision errors. 

Review the sampling design and note any special features or potential problems. 
Review the sampling design for any deviations (sections 1 .I .4 and 1.3). 

If DQOs have not been developed, review section 1 .I .3 and document the data 
user's tolerable limits on decision errors. 
If DQOs were developed, confirm the limits on decision errors. 
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CHAPTER 1 
STEP 1: REVIEW DQOs AND THE SAMPLING DESIGN 

1.1 OVERVIEW AND ACTIVITIES 

The DQA Process begins by reviewing the key outputs from the planning phase of the data life cycle: 
the Data Quality Objectives (DQOs), the Quality Assurance Project Plan (QAPP), and any associated 
documents. The DQOs provide the context for understanding the purpose of the data collection effort and 
establish the qualitative and quantitative criteria for assessing the quality of the data set for the intended use. 
The sampling design (documented in the QAPP) provides important information about how to interpret the 
data. By studying the sampling design, the analyst can gain an understanding of the assumptions under which 
the design was developed, as well as the relationship between these assumptions and the DQOs. By 
reviewing the methods by which the samples were collected, measured, and reported, the analyst prepares for 
the preliminary data review and subsequent steps of the DQA Process. 

Careful planning improves the representativeness and overall quality of a sampling design, the 
effectiveness and efficiency with which the sampling and analysis plan is implemented, and the usefulness.of 
subsequent DQA efforts. Given the benefits of planning, the Agency has developed the DQO Process which 
is a logical, systematic planning procedure based on the scientific method. The DQO Process emphasizes the 
planning and development of a sampling design to collect the right type, quality, and quantity of data needed 
to support the decision. Using both the DQO Process and the DQA Process will help to ensure that the 
decisions are supported by data of adequate quality; the DQO Process does so prospectively and the DQA 
Process does so retrospectively. 

When DQOs have not been developed during the planning phase of the study, it is necessary to 
develop statements of the data user's objectives prior to conducting DQA. The primary purpose of stating the 
data user's objectives prior to analyzing the data is to establish appropriate criteria for evaluating the quality 
of the data with respect to their intended use. Analysts who are not familiar with the DQO Process should 
refer to the Guidance for the Data Quality Objectives Process, EPA QAIG-4 (1 994), a book on statistical 
decision making using tests of hypothesis, or consult a statistician. 

The remainder of this chapter addresses recommended activities for performing this step of DQA and 
technical considerations that support these activities. The remainder of this section describes the 
recommended activities, the first three of which will differ depending on whether DQOs have already been 
developed for the study. Section 1.2 describes how to select the null and alternative hypothesis and section 
1.3 presents a brief overview of different types of sampling designs. 

1.1.1 Review Study Objectives 

In this activity, the objectives of the study are reviewed to provide context for analyzing the data. If a 
. planning process has been implemented before the data are collected, then this step reduces to reviewing the 

documentation on the study objectives. If no planning process was used, the data user should: 

rn Develop a concise definition of the problem (DQO Process Step 1) and the decision @QO Process Step 
2) for which the data were collected. This should provide the fundamental reason for collecting the 
environmental data and identify all potential actions that could result from the data analysis. 
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Identify if any essential information is missing (DQO Process Step 3). If so, either collect the missing 
information before proceeding, or select a different approach to resolving the decision. 

Specify the scale of decision making (any subpopulations of interest) and any boundaries on the study 
(DQO Process Step 4) based on the sampling design. The scale of decision making is the smallest area 
or time period to which the decision will apply. The sampling design and implementation may restrict 
how small or how large this scale of decision making can be. 

1.1.2 Translate 0 bjectives in to Statistical Hypotheses 

In  this activity, the data user’s objectives are used to develop a precise statement of the primary ’ 
hypotheses to be tested using environmental data. A statement of the primary statistical hypothese3 includes 
a null hypothesis, which is a “baseline condition” that is presumed to be true in the absence of strong 
evidence to the contrary, and an alternative hypothesis, which bears the burden of proof. In other words, the 
baseline condition will be retained unless the alternative condition (the alternative hypothesis) is thought to be 
true due to the preponderance of evidence. In general, such hypotheses consist of the following elements: . a population parameter of interest, which describes the feature of the environment that the data user is 

investigating; . a numerical value to which the parameter will be compared, such as a regulatory or risk-based threshold 
or a similar parameter from another place (e.g., comparison to a reference site) or time (e.g., comparison 
to a prior time); and . the relation (such as “is equal to” or “is greater than”) that specifies precisely how the parameter will be 
compared to the numerical value. 

If DQOs were developed, the statement of hypotheses already should be documented in the outputs of Step 6 
of the DQO Process. If DQOs have not been developed, then the analyst should consult with the data user to 
develop hypotheses that address the data user‘s concerns. Section 1.2 describes in detail how to develop the 
statement of hypotheses and includes a list of common encountered hypotheses for environmental decisions. . 

1.1.3 Develop Limits on Decision Errors 

The goal of this activity is to develop numerical probability limits that express the data user‘s 
tolerance for committing false positive (Type I) or false negative (Type 11) decision errors as a result of 
uncertainty in the data. A false positive error occurs when the null hypothesis is rejected when it is true. A 
false negative decision error occurs when the null hypothesis is not rejected when it is false. If tolerable 
decision error rates were not established prior to data collection, then the data user should: 

Specify the gray region where the consequences of a false negative decision error are relatively minor 
(DQO Process Step 6). The gray region is bounded on one side by the threshold value and on the other 

’ Throughout this document, the term “primary hypotheses” refers to the statistical hypotheses that correspond to the data user‘s 
decision. Other statistical hypotheses can be formulated to formally test thassumptions that underlie the specific calculations used to 
test the primary hypotheses. See Chapter 3 for examples of assumptions underlying primary hypotheses and Chapter 4 for examples 
of how to test these underlying assumptions. 
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side by that parameter value where the consequences of making a false negative decision error begin to be 
significant. Establish this boundary by evaluating the consequences of not rejecting the null hypothesis 
when it is false and then place the edge of the gray region where these consequences are severe enough to 
set a limit on the magnitude of this false negative decision error. The gray region is the area between this 
parameter value and the threshold value. 

The width of the gray region represents one important aspect of the decision maker’s concern for decision 
errors. A more narrow gray region implies a desire to detect conclusively the condition when the true 
parameter value is close to the threshold value (“close” relative to the variability in the data). When the 
true value of the parameter falls within the gray region, the decision maker may face a high probability of 
making a false negative decision error, because the data may not provide conclusive evidence for rejecting 
the null hypothesis, even though it is false (i.e., the data may be too variable to allow the decision maker 
to recognize that the baseline condition is, in fact, not true). . Specify tolerable limits on the probability of committing false positive and false negative decision errors 
(DQO Process Step 6) that reflect the decision maker’s tolerable limits for making an incorrect decision. 
Select a possible value of the parameter; then, choose a probability limit based on an evaluation of the 
seriousness of the potential consequences of making the decision error if the true parameter value is 
located at that point. At a minimum, the decision maker should specify a false positive decision error 
limit at the threshold value ( a), and a false negative decision error limit at the other edge of the gray 
region (p). 

An example of the gray region and limits on the probability of committing both false positive and false 
negative decision errors are contained in Box 1.1- 1. 

If DQOs were developed for the study, the tolerable limits on decision errors will already have been 
developed. These values can’be transferred directly as outputs for this activity. In this case, the action level 
is the threshold value; the false positive error rate at the action level is the Type I error rate or a; and the false 
negative error rate at the other bound of the gray region is the Type I1 error rate or p. 

1.1.4 Review Sampling Design 

The goal of this activity is to familiarize the analyst with the main features of the sampling design 
that was used to generate the environmental data. The overall type of sampling design and the manner in 
which samples were collected or measurements were taken will place conditions and constraints on how the 
data must be used and interpreted. Section 1.3 provides additional information about several different types 
of sampling designs that are commonly used in environmental studies. 

Review the sampling design documentation with the data user‘s objectives in mind. Look for design 
features that support or contradict those objectives. For example, if the data user is interested in making a 
decision about the mean level of contamination in an effluent stream over time, then composite samples may 
be an appropriate sampling approach. On the other hand, if the data user is looking for hot spots of 
contamination at a hazardous waste site, compositing should only be used with caution, to avoid “averaging 
away” hot spots. Also, look for potential problems in the implementation of the sampling design. For 
example, verify that each point in space (or time) had an equal probability of being selected for a simple 
random sampling design. Small deviations from a sampling plan may have minimal effect on the conclusions 
drawn from the data set. Significant or substantial deviations should be flagged and their potential effect 
carefully considered throughout the entire DQA. 
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Box 1 .I -1 : Example Applying the DQO Process Retrospectively 

A waste incineration company was concerned that waste fly ash could contain hazardous levels of cadmium 
and should be disposed of in a RCRA landfill. As a result, eight composite samples each consisting of eight 
grab samples were taken from each load of waste. The TCLP leachate from these samples were then 
analyzed using a method specified in 40 CFR, Pt. 261, App. II. DQOs were not developed for this problem; 
therefore, study objectives (sections 1 .I .1 through 1 .I .3) should be developed before the data are analyzed. 

1 .I .l 

rn Develop a concise definition of the problem -The problem is defined above. 

rn Identify if any essential information is missing - It does not appear than any essential information,is missing. 

rn Specify the scale of decision making - Each waste load is sampled separately and decisions need to be 
made for each load. Therefore, the scale of decision making is an individual load. 

Review Study Objectives 

1 .I .2 

Since composite samples were taken, the parameter of interest is the mean cadmium concentration. The 
RCRA regulatory standard for cadmium in TCLP leachate is 1 .O mg/L. Therefore, the two hypotheses are 

“mean cadmium 2 1 .O mg/L“ and “mean cadmium 

There are two possible decision errors 1) to decide the waste is hazardous (“mean 1 .O”) when it truly is 
not (“mean 1 .O”), and 2) to decide the waste is not hazardous (“mean < 1 . O )  when it truly is (“mean 1 .O”). 
The risk of deciding the fly ash is not hazardous when it truly is hazardous is more severe since potential 
consequences of this decision error include risk to human health and the environment. Therefore, this error 
will be labeled the false positive error and the other error will be the false negative error. As a result of this 
decision, the null hypothesis will be that the waste is hazardous (“mean cadmium 1 .O mg/L”) and the 
alternative hypothesis will be that the waste is not hazardous (“mean cadmium < 1 .O mg/L“). (See section 1.2 
for more information on developing the null and alternative hypotheses.) 

Translate Objectives into Statistical Hypotheses 

1 .O mglL.” 

1 .I .3 Develop Limits on Decision Errors 

rn Specify the gray region - The consequence of a false negative decision error near the action level is 
unnecessary resource expenditure. The amount of data also influences the width of the gray region. 
Therefore, tbr now, a gray region was : 
the power of the hypothesis test. 

Specify tolerable limits on the 
probability of committing a decision 
error - Consequences of a false 
positive error include risk to human 
health and environment. Another 
consequence for the landfill owners is 
the risk of fines and imprisonment. 
Therefore, the stringent limit of 0.05 
was set on the probability of a false 
positive decision error. Consequences 
of a false negative error include 
unnecessary expenditures so a limit of 
0.20 was set on its probability. This 
error rate could be revised based on 
the power of the hypothesis test. 

The results of this planning process 
are summarized in the Decision 
Performance Goal Diagram. 

: from .75 to 1 .O mg/L. This region could be revised depending on 

I Decision Performance Goal Diagram 
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1.2 DEVELOPING THE STATEMENT OF HYPOTHESES 

The full statement of the statistical hypotheses has two major parts: the null hypothesis (H o )  and the 
alternative hypothesis (H *). In both parts, a population parameter is compared to either a fixed value (for a 
one-sample test) or another population parameter (for a two-sample test). The population parameter is a 
quantitative characteristic of the population that the data user wants to estimate using the data. In other 
words, the parameter describes that feature ofthe population that the data user will evaluate when making the 
decision. Examples of parameters are the population mean and median. 

If the data user is interested in drawing inferences about only one population, then the null and 
alternative hypotheses will be stated in terms that relate the true value of the parameter to some fixed 
threshold value. A common example of this one-sample problem in environmental studies is when pollutant 
levels in an effluent stream are compared to a regulatory limit. If the data user is interested in comparing two 
populations, then the null and alternative hypotheses will be stated in termsthat compare the true value of one 
population parameter to the corresponding true parameter value of the other population. A common example 
of this two-sample problem in environmental studies is when a potentially contaminated waste site is being 
compared to a reference area using samples collected from the respective areas. In this situation, the 
hypotheses often will be stated in terms of the difference between the two parameters. 

The decision on what should constitute the null hypothesis and what should be the alternative is 
sometimes difficult to ascertain. In many cases, this problem does not arise because the null and alternative 
hypotheses are determined by specific regulation. However, when the null hypothesis is not specified by 
regulation, it is necessary to make this determination. The test of hypothesis procedure prescribes that the 
null hypothesis is only rejected in favor of the alternative, provided there is overwhelming evidence from the 
data that the null hypothesis is false. In other words, the null hypothesis is considered to be true unless the 
data show conclusively that this is not so. Therefore, it is sometimes useful to choose the null and alternative 
hypotheses in light of the consequences of possibly making an incorrect decision between the null and 
alternative hypotheses. The true condition that occurs with the more severe decision error (not what would be 
decided in error based on the data) should be defined as the null hypothesis. For example, consider the two 
decision errors: “decide a company does not comply with environmental regulations when it truly does” and 
“decide a company does comply with environmental regulations when it truly does not.” If the first decision 
error is considered the more severe decision error, then the true condition of this error, “the company does 
comply with the regulations” should be defined as the null hypothesis. If the second decision error is 
considered the more severe decision error, then the true condition of this error, “the company does not comply 
with the regulations” should be defined as the null hypothesis. 

An alternative method for defining the null hypothesis is based on historical information. If a large 
amount of information exists suggesting that one hypothesis is extremely likely, then this hypothesis should 
be defined as the alternative hypothesis. In this case, a large amount of data may not be necessary to provide 
overwhelming evidence that the other (null) hypothesis is false. For example, if the waste from an incinerator 
was previously hazardous and the waste process has not changed, it may be more cost-effective to define the 
alternative hypothesis as “the waste is hazardous” and the null hypothesis as “the waste is not hazardous.” 

Consider a data user who wants to know whether the true mean concentration (p) of atrazine in 
ground water at a hazardous waste site is greater than a fixed threshold value C .  If the data user presumes 
from prior information that the true mean concentration is at least C due possibly to some contamination 
incident, then the data must provide compelling evidence to reject that presumption, and the hypotheses can 
be stated as follows: 
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Narrative Statement of Hypotheses 

Null Hypothesis (Baseline Condition): 
The true mean concentration of atrazine in ground 
water is greater than or equal to the threshold 
value C; versus 

Alternative Hy pothesis: 
The true mean concentration of atrazine in ground 
water is less than the threshold value C. 

Narrative Statement of Hypotheses 

Null Hypothesis (Baseline Condition): 
The true mean concentration of atrazine in ground 
water is less than or equal to the threshold 
value C:  versus 

Statement of Hypotheses Using Standard Notation 

H,: p 2 C; 

versus 

HA: p < C  

Alternative Hypothesis: 
The true mean concentration of atrazine in ground 
water is greater than the threshold value C. 

Statement of Hypotheses Using Standard Notation 

H,: p 2 C; 

versus 

In stating the primary hypotheses, it is convenient to use standard statistical notation, as shown 
throughout this document. However, the logic underlying the hypothesis always corresponds to the decision 
of interest to the data user. 

Table 1.2- 1 summarizes some common types of environmental decisions and the corresponding 
hypotheses. In Table 1.2-1, the parameter is denoted using the symbol “ 0,” and the difference between two 
parameters is denoted using “ 0, - 02)) where 0, represents the parameter of the first population and 0, 
represents the parameter of the second population. The use of “ 0” is to avoid using the terms “population 
mean” or “population median” repeatedly because the structure of the hypothesis test remains the same 
regardless of the population parameter. The fixed threshold value is denoted “C,” and the difference between 
two parameters is denoted “ 6;’ (it is common to see the null hypothesis defined such that 6, = 0). If the data 
user‘s problem does not’fall into one of the categories described in Table 1.2- 1, the problem and associated 
hypotheses may be of a more complicated form and a statistician should be consulted. 

For the first of the six decision problems in Table 1.2- 1, only estimates of 0 that exceed C can cast 
doubt on the null hypothesis. This is called a one-tailed hypothesis test, because only parameter estimates on 
one side of the threshold value can lead to rejection of the null hypothesis. The second, fourth, and fifth rows 
of Table 1.2-1 are also examples of one-tailed hypothesis tests. The third and sixth rows of Table 1.2-1 are 
examples of two-tailed tests, because estimates falling both below and above the null-hypothesis parameter 
value can lead to rejection of the null hypothesis. Most hypotheses connected with environmental monitoring 
are one-tailed because high pollutant levels can harm humans or ecosystems. 
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Table 1.2-1. Commonly Used Statements of Statistical Hypotheses 

Type of Decision 

Compare environmental conditions to a fixed 
threshold value, such as a regulatory standard or 
acceptable risk level; presume that the true 
condition is less than the threshold value. 

Compare environmental conditions to a fixed 
threshold value; presume that the true condition is 
greater than the threshold value. 

Compare environmental conditions to a fixed 
threshold value; presume that the true condition is 
equal to the threshold value and the data user is 
concerned whenever conditions vary significantly 
fiom this value. 

Compare environmental conditions associated with 
two different populations to a fixed threshold value 
(6,) such as a regulatory standard or acceptable 
risk level; presume that the true condition is less 
than the threshold value. If it is presumed that 
conditions associated with the two populations are 
the same. the threshold value is 0. 

~ 

Compare environmental conditions associated with 
two different populations to a fixed threshold value 
(6,) such as a regulatory standard or acceptable 
risk level; presume that the true condition is greater 
than the threshold value. I f  it is presumed that 
conditions associated with the two populations are 
the same, the threshold value is 0. 

Compare environmental conditions associated with 
two different populations to a fixed threshold value 
(6,) such as a regulatory standard or acceptable 
risk level; presume that the true condition is equal 
to the threshold value. I f  it is presumed that 
conditions associated with the two populations are 
the same, the threshold value is 0. 
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1.3 DESIGNS FOR SAMPLING ENVIRONMENTAL MEDIA 

Sampling designs provide the basis for how a set of samples may be analyzed. Different sampling 

' 

designs require different analysis techniques and different assessment procedures. There are two primary 
types of sampling designs: authoritative (judgment) sampling and probability sampling. This section 
describes some of the most common sampling designs. 

1.3.1 Authoritative Sampling 

With authoritative (judgment) sampling, an expert having knowledge of the site (or process) 
designates where and when samples are to be taken. This type of sampling should only be considered when 
the objectives of the investigation are not of a statistical nature, for example, when the objective o h  study is 
to identify specific locations of leaks, or when the study is focused solely on the sampling locations 
themselves. Generally, conclusions drawn from authoritative samples apply only to the individual samples 
and aggregation may result in severe bias and lead to highly erroneous conclusions. Judgmental sampling 
also precludes the use of the sample for any purpose other than the original one. Thus if the data may be used 
in further studies (e.g., for an estimate of variability in a later study), a probabilistic design should be used. 

When the study objectives involve estimation or decision making, some form of probability sampling 
is required. As described below, this does not preclude use of the expert's knowledge of the site or process in 
designing a probability-based sampling plan; however, valid statistical inferences require that the plan 
incorporate some form of randomization in choosing the sampling locations or sampling times. For example, 
to determine maximum SO, emission from a boiler, the sampling plan would reasonably focus, or put most of 
the weight on, periods of maximum or near-maximum boiler operation. Similarly, if a residential lot is being 
evaluated for contamination, then the sampling plan can take into consideration prior knowledge of 
contaminated areas, by weighting such areas more heavily in the sample selection and data analysis. 

1.3.2 Probability Sampling 

Probability samples are samples in which every member of the target population (Le., every potential 
sampling unit) has a known probability of being included in the sample. Probability samples can be of 
various types, but in some way, they all make use of randomization, which allows valid probability 
statements to be made about the quality of estimates or hypothesis tests that are derived from the resultant 
data. 

One common misconception of probability sampling procedures is that these procedures preclude 
the use of important prior information. Indeed, just the opposite is true. An efficient sampling design is one 
that uses all available prior information to stratify the region and set appropriate probabilities of selection. 
Another common misconception is that using a probability sampling design means allowing the possibility 
that the sample points will not be distributed appropriately across the region. However, if there is no prior 
information regarding the areas most likely to be contaminated, a grid sampling scheme (a type of stratified 
design) is usually recommended to ensure that the sampling points are dispersed across the region. 

1.3.2.1 Simple Random Sampling 

The simplest type of probability sample is the simple random sample where every possible sampling 
unit in the target population has an equal chance of being selected. Simple random samples, like the other 
samples, can be either samples in time andor space and are often appropriate at an early stage of an 
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investigation in which little is known about systematic variation within the site or process. All of the 
.sampling units should have equal volume or mass, and ideally be of the same shape if applicable. With a 
simple random sample, the term “random” should.not be interpreted to mean haphazard; rather, it has the 
explicit meaning of equiprobable selection. Simple random samples are generally developed through use of a 
random number table or through computer generation of pseudo-random numbers. 

1.3.2.2 Sequential Random Sampling 

Usually, simple random samples have a fixed sample size, but some alternative approaches are 
available, such as sequential random sampling, where the sample sizes are not fixed a priori. Rather, a 
statistical test is performed after each specimen’s analysis (or after some minimum number have been 
analyzed). This strategy could be applicable when sampling and/or analysis is quite expensive, when 
information concerning sampling and/or measurement variability is lacking, when the characteristics of 
interest are stable over the time frame of the sampling effort, or when the objective of the sampling effort is 
to test a single specific hypothesis. 

1.3.2.3 Systematic Samples 

In the case of spatial sampling, systematic sampling involves establishing a two-dimensional (or in 
some cases a three-dimensional) spatial grid and selecting a random starting location within one of the cells. 
Sampling points in the other cells are located in a deterministic way relative to that starting point. In addition, 
the orientation of the grid is sometimes chosen randomly and various types of systematic samples are 
possible. For example, points may be arranged in a pattern of squares (rectangular grid sampling) or a 
pattern of equilateral triangles (triangular grid sampling). The result of either approach is a simple pattern of 
equally spaced points at which sampling is to be performed. 

Systematic sampling designs have several advantages over random sampling and some of the other 
types of probability sampling. They are generally easier to implement, for example. They are also preferred 
when one of the objectives is to locate “hot spots” within a site or otherwise map the pattern of 
concentrations over a site. On the other hand, they should be used with caution whenever there is a 
possibility of some type of cyclical pattern in the waste site or process. Such a situation, combined with the, 
uniform pattern of sampling points, could very readily lead to biased results, 

1.3.2.4 Stratified Samples 

Another type of probability sample is the stratified random sample, in which the site or process is 
divided into two or more nonoverlapping strata, sampling units are defined for each stratum, and separate 
simple random samples are employed to select the units in each stratum. (If a systematic sample were 
employed within each stratum, then the design would be referred to as a stratified systematic sample.) Strata 
should be defined so that physical samples within a stratum are more similar to each other than to samples 
from other strata. If so, a stratified random sample should result in more precise estimates of the overall 
population parameter than those that would be obtained from a simple random sample with the same number 
of sampling units. 

Stratification is an accepted way to incorporate prior knowledge and professional judgment into a 
probabilistic sampling design. Generally, units that are “alike” or anticipated to be “alike” are placed 
together in the same stratum. Units that are contiguous in space (e.g., similar depths) or time are often 
grouped together into the same stratum, but characteristics other than spatial or temporal proximity can also 
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be employed. Media, terrain characteristics, concentration levels, previous cleanup attempts, and 
confounding contaminants can also be used as the basis for creating strata. 

Advantages of stratified samples over random samples include their ability to ensure more uniform 
coverage of the entire target population and, as noted above, their potential for achieving greater precision in 
certain estimation problems. Even when imperfect information is used to form strata, the stratified random 
sample will generally be more cost-effective than a simple random sample. A stratified design can also be 
useful when there is interest in estimating or testing characteristics for subsets of the target population. 
Because different sampling rates can be used in different strata, one can oversample in strata containing those 
subareas of particular interest to ensure that they are represented in the sample. In general, statistical 
calculations for data generated via stratified samples are more complex than for random samples, and certain 
types of tests, for example, cannot be performed when stratified samples are employed. Therefore;’a 
statistician should be consulted when stratified sampling is used. 

1.3.2.5 Corn positing Physical Samples 

When analysis costs are large relative to sampling costs, cost-effective plans can sometimes be 
achieved by compositing physical samples or specimens prior to analysis, assuming that there are no safety 
hazards or potential biases (for example, the loss of volatile organic compounds from a matrix) associated 
with such compositing. For the same total cost, compositing in this situation would allow a larger number of 
sampling units to be selected than would be the case if.compositing were not used. Composite samples 
reflect a physical rather than a mathematical mechanism for averaging. Therefore, compositing should 
generally be avoided if population parameters other than a mean are of interest (e.g., percentiles or standard 
deviations). 

Composite sampling is also useful when the analyses of composited samples are to be used in a 
two-staged approach in which the composite-sample analyses are used solely as a screening mechanism to 
identify if additional, separate analyses need to be performed. This situation might occur during an early 
stage of a study that seeks to locate those areas that deserve increased attention due to potentially high levels 
of one or more contaminants. 

1.3.2.6 Other Sampling Designs 

Adaptive sampling involves taking a sample and using the resulting information to design the next 
stage of sampling. The process may continue through several additional rounds of sampling and analysis. A 
common application of adaptive sampling to environmental problems involves subdividing the region of 
interest into smaller units, taking a probability sample of these units, then sampling all units that border on 
any unit with a concentration level greater than some specified level C. This process is continued until all 
newly sampled units are below C. The field of adaptive sampling is currently undergoing active development 
and can be expected to have a significant impact on environmental sampling. 

Ranked set sampling (RSS) uses the availability of an inexpensive surrogate measurement when it is 
correlated with the more expensive measurement of interest. The method exploits this correlation to obtain a 
sample which is more representative of the population that would be obtained by random sampling, thereby 
leading to more precise estimates of population parameters than what would be obtained by random 
sampling. RSS consists of creating n groups, each of size n (for a total of n * initial samples), then ranking the 
surrogate from largest to smallest within each group. One sample from each group is then selected according 
to a specified procedure and these n samples are analyzed for the more expensive measurement of interest. 
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CHAPTER 2 

STEP 2: CONDUCT A PRELIMINARY DATA REVIEW 

THE DATA QUALITY ASSESSMENT PROCESS 

r 

Review DQOs and Sampling Design 5dk 
Conduct Preliminary Data Review 

Select the Statistical Test 

Verify the Assumptions 

Draw Conclusions From the Data 

CONDUCT PRELIMINARY DATA REVIEW 

euroose 
Generate statistical quantities and graphical 
representations that describe the data. Use this 
information to learn about the structure of the data 
and identify any patterns or relationships. 

Activities 

- Review Quality Assurance Reports - Calculate Basic Statistical Quantities 
-Graph the Data 

- Statistical quantities 
Graphical representations 

Step 2: Conduct a Preliminary Data Review 

0 Review quality assurance reports. 
Look for problems or anomalies in the implementation of the sample collection and 
analysis procedures. 
Examine QC data for information to verify assumptions underlying the Data Quality 
Objectives, the Sampling and Analysis Plan, and the Quality Assurance Project Plans. 

Consider calculating appropriate percentiles (section 2.2.1) 
Select measures of central tendency (section 2.2.2) and dispersion (section 2.2.3). 
If the data involve two variables, calculate the correlation coefficient (section 2.2.4). 

@ Calculate the statistical quantities. 

0 Display the data using graphical representations. 
Select graphical representations (section 2.4) that illuminate the structure of the data set 
and highlight assumptions underlying the Data Quality Objectives, the Sampling and 
Analysis Plan, and the Quality Assurance Project Plans. 
Use a variety of graphical representations that examine different features of the set. 
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STEP 2: CONDUCT A PRELIMINARY DATA REVIEW 

Box and Whisker Plot 

Coded Scatter Plot. 

Contour Plots 

Autocorrelation Function 

2.3.3 Figure 2.3-3 Box 2.3-5 BOX 2.3-6 

2.3.7.3 Figure 2.3-9 

2.3.9.3 

2.3.8.2 Figure 2.3-13 Box 2.3-16 Box 2.3-17 

Empirical Quantile-Quantile Plot 

Frequency Plots 

h-Scatterplot 

Histogram 

2.3.7.4 Box 2.3-14 Box 2.3-14 Box 2.3-14 

2.3.1 Figure 2.3-1 Box 2.3-1 BOX 2.3-2 

2.3.9.3 

2.3.1 Figure 2.3-2 Box 2.3-1 BOX 2.3-2 

Normal Probability Plot 

Parallel Coordinate Plot 

Posting Plots 

2.3.6 BOX 2.3-12 BOX 2.3-1 1 BOX 2.3-12 

2.3.7.3 Figure 2.3-10 

2.3.9.1 Figure 2.3-14 Box 2.3-18 Box 2.3-18 

Ranked Data Plot 

Scatter Plot 

Scatter Plot Matrix 

2.3.4 Figure 2.3-4 Box 2.3-7 BOX 2.3-8 

2.3.7.2 Figure 2.3-8 Box 2.3-13 Box 2.3-13 

2.3.7.3 Figure 2.3-1 1 

Stem-and-leaf Plot 

Symbol Plots 

2.3.2 BOX 2.3-4 BOX 2.3-3 BOX 2.3-4 

2.3.9.2 Figure 2.3-15 Box 2.3-18 Box 2.3-18 

Statistical Quantities Section Directions I Example 

Box2.2-4 I Box2.2-5 Coefficient of Variation 2.2.3 

2.2.4 

2.2.3 

2.2.2 

BOX 2.2-6 BOX 2.2-6 

BOX 2.2-4 BOX 2.2-5 * BOX 2.2-2 BOX 2.2-3 

Correlation Coefficient 

Interquartile Range 

Mean 

Median 2.2.2 Box2.2-2 I Box 2.2-3 

Mode 2.2.2 Box2.2-2 I Box2.2-3 

Percent i 1 es /Quanti 1 es 2.2.1 BOX 2.2-1 BOX 2.2-1 + BOX 2.2-4 BOX 2.2-5 Range 2.2.3 

Standard Deviation 2.2.3 Box 2.2-4 I Box 2.2-5' 

Variance 2.2.3 Box 2.2-4 I Box2.2-5 

I Graphical Representations I Section I Figure I Directions I Example 

~~ 

Quantile Plot I 2.3.5 I Figure 2.3-5 I Box 2.3-9 I Box 2.3-10 

Time Plot I 2.3.8.1 I Figure 2.3-12 I Box 2.3-15 I Box 2.3-15 
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CHAPTER 2 
STEP 2: CONDUCT A PRELIMINARY DATA REVIEW 

2.1 OVERVIEW AND ACTIVITIES 

In  this step of the DQA Process, the analyst conducts a preliminary evaluation of the data set, 
calculates some basic statistical quantities, and examines the data using graphical representations. A 
preliminary data review should be performed whenever data are used, regardless of whether they are used to 
support a decision, estimate a population parameter, or answer exploratory research questions. By reviewing 
the data both numerically and graphically, one can learn the “structure” of the data and thereby identify 
appropriate approaches and limitations for using the data. The DQA software DataQUEST (G-9D, 1996) 
will perform all of these functions as well as more sophisticated statistical tests. 

There are two main elements of preliminary data review: (1) basic statistical quantities (summary 
statistics); and (2) graphical representations of the data. Statistical quantities are functions of the data that 
numerically describe the data set. Examples include a mean, median, percentile, range, and standard 
deviation. They can be used to provide a mental picture of the data and are useful for making inferences 
concerning the population from which the data were drawn. Graphical representations are used to identify 
patterns and relationships within the data, confirm or disprove hypotheses, and identify potential problems. 
For example, a normal probability plot may allow an analyst to quickly discard an assumption of normality 
and may identify potential outliers. 

The preliminary data review step is designed to make the analyst familiar with the data. The review 
should identify anomalies that could indicate unexpected events that may influence the analysis of the data. 
The analyst may know what to look for based on the anticipated use of the data documented in the Data 
Quality Objectives Process, the Quality Assurance Project Plan, and any associated documents. The results 

of the review are then used to select a procedure for testing a statistical hypotheses to support the data user’s 
decision. 

2.1.1 Review Quality Assurance Reports 

The first activity in conducting a preliminary data review is to review any relevant quality assurance 
(QA) reports that describe the data collection and reporting process as it actually was implemented. These 
QA reports provide ‘valuable information about potential problems or anomalies in the data set. Specific 
items that may be helpful include: 

0 Data validation reports that document the sample collection, handling, analysis, data reduction, and 
reporting procedures used; 

0 Quality control reports from laboratories or field stations that document measurement system 
performance, including data from check samples, split samples, spiked samples, or any other internal 
QC measures; and 

Technical systems reviews, performance evaluation audits, and audits of data quality, including data 
from performance evaluation samples. 
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When reviewing QA reports, particular attention should be paid to information that can be used to 
check assumptions made in the Data Quality Objectives Process. Of great importance are apparent anomalies 
in recorded data, missing values, deviations from standard operating procedures, and the use of nonstandard 
data collection methodologies. 

2.1.2 Calculate Basic Statistical Quantities 

The goal of this activity is to summarize some basic quantitative characteristics of the data set using 
common statistical quantities. Some statistical quantities that are useful to the analyst include: number of 
observations; measures of central tendency, such as a mean, median, or mode; measures of dispersion, such 
as range, variance, standard deviation, coefficient of variation, or interquartile range; measures of relative 
standing, such as percentiles; measures of distribution symmetry or shape; and measures of association 
between two or more variables, such as correlation. These measures can then be used for description, 
communication, and to test hypothesis regarding the population from which the data were drawn. Section 2.2 
provides detailed descriptions and examples of these statistical quantities. 

The sample design may. influence how the statistical quantities are computed. The formulas given in 
this chapter are for simple random sampling, simple random sampling with composite samples, and 
randomized systematic sampling. If a more complex design is used, such as a stratified design, then the 
formulas may need to be adjusted. 

2.1.3 Graph the Data 

The goal of this step is to identify patterns and trends in the data that might go unnoticed using 
purely numerical methods. Graphs can be used to identify these patterns and trends, to quickly confirm or 
disprove hypotheses, to discover new phenomena, to identify potential problems, and to suggest corrective 
measures. In addition, some graphical representations can be used to record and store data compactly or to 
convey information to others. Graphical representations include displays of individual data points, statistical 
quantities, temporal data, spatial data, and two or more variables. Since no single graphical representation 
will provide a complete picture of the data set, the analyst should choose different graphical techniques to 
illuminate different features of the data. Section 2.3 provides descriptions and examples of common 
graphical representations. 

At a minimum, the analyst should choose a graphical representation of the individual data points and 
a graphical representation of the statistical quantities. If the data set has a spatial or temporal component, 
select graphical representations specific to temporal or spatial data in addition to those that do not. If the data 
set consists of more than one variable, treat each variable individually before developing graphical 
representations for the multiple variables. If the sampling plan or suggested analysis methods rely on any 
critical assumptions, consider whether a particular type of graph might shed light on the validity of that 
assumption. For example, if a small-sample study is strongly dependent on the assumption of normality, then 
a normal probability plot would be useful (section 2.3.6). 

The sampling design may influence what data may be included in each representation. Usually, the 
graphical representations should be applied to each complete unit of randomization separately or each unit of 
randomization should be represented with a different symbol. For example, the analyst could generate box 
plots for each stratum instead of generating one box plot that includes the data from all the strata. 
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2.2 STATISTICAL QUANTITIES 

2.2.1 Measures of Relative Standing 

Sometimes the analyst is interested in knowing the relative position of one of several observations in 
relation to all of the observations. Percentiles are one such measure of relative standing that may also be 
usehl for summarizing data. A percentile is the data value that is greater than or equal to a given percentage 
of the data values. Stated in mathematical terms, the p " percentile is the data value that is greater than or 
equal to p% of the data values and is less than or equal to (1 -p)% of the data values. Therefore, if 'x' is the p Ih 

percentile, then p% of the values in the data set are less than or equal to x, and (1 00-p)% of the values are 
greater than or equal to x. A sample percentile may fall between a pair of observations. For example, the 
7Sh percentile of a data set of 10 observations is not uniquely defined. Therefore, there are seveth methods 
for computing sample percentiles, the most common of which is described in Box 2.2- 1. 

lmportant percentiles usually reviewed are the quartiles of the data, the 25 *, 50", and 75Ih 
percentiles. The 50 * percentile is also called the sample median (section 2.2.2), and the 25 Ih and 75" 
percentile are used to estimate the dispersion of a data set (section 2.2.3). Also important for environmental 
data are the 90th, 95*, and 99"' percentile where a decision maker would like to be sure that 90%, 95%, or 
99% of the contamination levels are below a fixed risk level. 

Box 2.2-1 : Directions for Calculating the Measure of Relative Standing (Percentiles) 
with an Example 

Let X,, X,, ..., X, represent the n data points. To compute the $' percentile, y(p), first list the data from 
smallest to largest and label these points TI), X(,), . . ., X(" )  (so that X(l) is the smallest, X(,) is the second 
smallest, and X(") is the largest). Lett = pI100, and multiply the sample size n by t. Divide the result into the 
integer part and the fractional part, Le., let nt = j + g where j is the integer part and g is the fraction part. Then 
the p"' percentile, y(p), is calculated by: 

If g = 0, 

otherwise, Y(P) = X(,+,) 

Y(P) = o$,) + X(,+I))I2 

Example: The 90'" and 95"' percentile will be computed for the following 10 data points (ordered from smallest 
to largest) : 4, 4, 4, 5, 5, 6, 7, 7, 8, and 10 ppb. 

For the 95th percentile, t = pl l00 = 95/100= .95 and nt = (10)(.95) = 9.5 = 9 + .5. Therefore, j = 9 and 
g = .5. Because g = .5 # 0, y(95) = X(l+l) = X(9+1)  = X(lo) = 10 ppm. Therefore, 10 ppm is the 9 9  percentile 
of the above data. 

For the 90"' percentile, t = pl l00 = 9Ol100 = .9 and nt = (10)(.9) = 9. Therefore j = 9 and g = 0. Since g = 0, 
y(90) = (X(9) + X(lo)) I 2  = (8 + IO) I 2  = 9 ppm. 

A quantile is similar in concept to a percentile; however, a percentile represents a percentage whereas 
a quantile represents a fraction. I f  'x'is the p * percentile, then at least p% of the values in the data set lie at or 
below x, and at least ( 1  00-p)% of the values lie at or above x, whereas if x is the p/lOO quantile of the data, 
then the fraction p/100 of the data values lie at or below x and the fiaction (l-p)/lOO of the data values lie at 
or above x. For example, the .95 quantile has the property that .95 of the observations lie at or below x and 
.05 of the data lie at or above x. For the example in Box 2.2-1,9 ppm would be the .95 quantile and 10 ppm 
would be the .99 quantile of the data. 
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2.2.2 Measures of Central Tendency 

Measures of central tendency characterize the center of a sample of data points. The three most 
common estimates are the mean, median, and the mode. Directions for calculating these quantities are 
contained in Box 2.2-2; examples are provided in Box 2.2-3. 

The most commonly used measure of the center of a sample is the sample mean, denoted by X. This 
estimate of the center of a sample can be thought of as the “center of gravity” of the sample. The sample 

mean is an arithmetic average for simple sampling designs; however, for complex sampling designs, such as 
stratification, the sample mean is a weighted arithmetic average. The sample mean is influenced by extreme . 
values (large or small) and nondetects (see section 4.7). 

The sample median ( 8 )  is the second most popular measure of the center of the data. This value falls 
directly in the middle of the data when the measurements are ranked in order from smallest to largest. This 
means that ‘h of the data are smaller than the sample median and ’h of the data are larger than the sample 
median. The median is another name for the 50 * percentile (section 2.2.1). The median is not influenced by 
extreme values and can easily be used in the case of censored data (nondetects). 

The third method of measuring the center of the data is the mode. The sample mode is the value of 
the sample that occurs with the greatest frequency. Since this value may not always exist, or if it does it may 
not be unique, this value is the least commonly used. However, the mode is useful for qualitative data. 

2.2.3 Measures of Dispersion 

Measures of central tendency are more meaningfbl if accompanied by information on how the data 
spread out from the center. Measures of dispersion in a data set include the range, variance, sample standard 
deviation, coefficient of variation, and the interquartile range. Directions for computing these measures are 
given in Box 2.2-4; examples are given in Box 2.2-5. 

. The easiest measure of dispersion to compute is the sample range, For small samples, the range is 
easy to interpret and may adequately represent the dispersion of the data. For large samples, the range is not 
very informative because it only considers (and therefore is greatly influenced) by extreme values. 

The sample variance measures the dispersion from the mean of a data set. A large sample variance 
implies that there is a large spread among the data so that the data are not clustered around the mean. A small 
sample variance implies that there is little spread among the data so that most of the data are near the mean. 
The sample variance is affected by extreme values and by a large number of nondetects. The sample standard 

deviation is the square root of the sample variance and has the same unit of measure as the data. 

The coefficient of variation (CV) is a unitless measure that allows the comparison of dispersion 
across several sets of data. The CV is often used in environmental applications because variability 
(expressed as a standard deviation) is often proportional to the mean. 

When extreme values are present, the interquartile range may be more representative of the 
dispersion of the data than the standard deviation. This statistical quantity does not depend on extreme 
values and is therefore useful when the data include a large number of nondetects. 
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Box 2.2-2: Directions for Calculating the Measures of Central Tendency 

Let X,, X,, ..., X, represent the n data points. 

Sample Mean The sample meany is the sum of all the data points divided by the total number of data points 
(n): 

- 1 "  x = - Ex; 
n 1-1  

Sample Median The sample median (I?) is the center of the data when the measurements are ranked in 
order from smallest to largest. To compute the sample median, list the data from smallest to largest and label 
these points F,), X(,), . . ., X(") (so that 5 , )  is the smallest, F 2 ,  is the second smallest, and >Fn, is the 
largest). 

If the number of data points is odd, then x = x~[,+,l,2) - 

3.n) + %.nI+U If the number of data points is even, then 2 = 
2 

Sample Mode: The mode is the value of the sample that occurs with the greatest frequency. The mode may 
not exist, or if it does, it may not be unique. To find the mode, count the number of times each value occurs. 
The sample mode is the value that occurs most frequently. 

Box 2.2-3: Example Calculations of the Measures of Central Tendency 

Using the directions in Box 2.2-2 and the following 10 data points (in ppm): 4, 5,6, 7,4, 10,4, 5, 7, and 8, 
the following is an example of computing the sample mean, median, and mode. 

Sample mean: 

x =  4 + 5  + 6 + 7  + 4 + 1 0  + 4 + 5  + 7  + 8  - - -  60 
- 6 PPm - 

10 10 

Therefore, the sample mean is 6 ppm. 

Sample median: The ordered data are: 4,4 ,4 ,  5, 5,6, 7, 7 ,8,  and I O .  Since n=10 is even, the sample 
median is 

Thus, the sample median is 5.5 ppm. 

Sample mode: Computing the number of times each value occurs yields: 

4 appears 3 times; 5 appears 2 times; 6 appears 1 time; 7 appears 2 times; 8 appears 1 time; and 10 
appears 1 time. 

Because the value of 4 ppm appears the most times, it is the mode of this data set. 
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Box 2.24: Directions for Calculating the Measures of Dispersion 

Let X,, X,, ..., X,, represent the n data points. 

Sample Ranqer The sample range (R) is the difference between the largest value and the smallest value of 
the sample, i.e., R = maximum - minimum. 

Sample Variance To compute the sample variance (s), compute: 

SamDle Standard Deviation The sample standard deviation (s) is the square root of the sample variance, i.e., 

s = p  

Coefficient of Variation The coefficient of variation ( C y  is the standard deviation divided by the sample mean 
(section 2.2.2), i.e., CV = sh?. The CV is often expressed as a percentage. 

lnterauartile Ranqe Use the directions in section 2.2.1 to compute the 25and 7 9  percentiles of the data 
(y(25) and y(75) respectively). The interquartile range (IQR) is the difference between these values, Le., 
IQR = ~ ( 7 5 )  - ~ (25) .  

Box 2.25: Example Calculations of the Measures of Dispersion 

In this box, the directions in Box 2.2-4 and the following 10 data points (in ppm): 4, 5, 6, 7,4, 10,4, 5, 7, and 
8 ,  are used to calculate the measures of dispersion. From Box 2 3 %  = 6 ppm. 

Sample Ranaer R = maximum - minimum = 10 - 4 = 6 pprn 

Sample Variance 

w2 396 - - (4 +5 +... +7 +8)2 
10 

[42+52+... +72+82] - 
= 4 p p m 2  - 10 - s 2  = 

1 0 - 1  I 9 

Sample Standard Deviation s = fl = 4 = 2 pprn 

1 
3 

- 
Coefficient of Variation CV = s J X = 2ppm 16ppm = - = 33% 

lnterauartile Ranae Using the directions in section 2.2.1 to compute the 29 and 79 percentiles of the data 
(y(25) and y(75) respectively): y(25) = & + , ) = X(3) = 4 ppm and y(75) = )(, + , = X,,) = 7 ppm. The 
interquartile range (IQR) is the difference between these values: IQR = y(75) - y(25) = 7 - 4 = 3 ppm 
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2.2.4 Measures of Association 

Data often include measurements of several characteristics (variables) for each sample point and 
there may be interest in knowing the relationship or level of association between two or more of these 
variables. One of the most common measures of association is the correlation coefficient. Directions and an 
example for calculating a correlation coefficient are contained in Box 2.2-6. 

The correlation coefficient measures the linear relationship between two variables. 'A linear 
association implies that as one variable increases so does the other linearly, or as one variable decreases the 
other increases linearly. Values of the correlation coefficient close to +1 (positive correlation) imply that as 
one variable increases so does the other, the reverse holds for values close to -1. A value of +1 implies a 
perfect positive linear correlation, i.e., all the data pairs lie on a straight line with a positive skpe.  A value of 
- 1  implies perfect negative linear correlation. Values close to 0 imply little correlation between the variables. 

The correlation coefficient does not imply cause and effect. The analyst may say that the correlation 
between two variables is high and the relationship is strong, but may not say that one variable causes the 
other variable to increase or decrease without further evidence and strong statistical controls. The correlation 
coefficient does not detect nonlinear relationships so it should be used only in conjunction with a scatter plot 
(section 2.3.7.2). A scatter plot can be used to determine if the correlation coefficient is meaningful or if 
some measure of nonlinear relationships should be used. The correlation coefficient can be significantly 
changed by extreme values so a scatter plot should be used first to identify such values. 

Box 2.2-6: Directions for Calculating the Correlation Coefficient with an Example I T -  
Let X,, X,, ..., X,, represent one variable of the n data points and let Y,, ..., Y, represent a second variable of 
the n data points. The Pearson correlation coefficient, r, between X and Y is computed by: 

n n  

n 
c x i q  - 
i- 1 r =  

- -I . 
n i -  I 

Example Consider the following data set (in ppb): Sample 1 -arsenic (X) = 4.0, lead (Y) = 8.0; Sample 2 - 
arsenic = 3.0, lead = 7.0; Sample 3 - arsenic = 2.0, lead = 7.0; and Sample 4 - arsenic = 1 .O, lead = 6.0. II 
pq.=lO, 2I;=28, 2&2=30, 2?2=198, p X i q  = (4x8) +...+ (1x6) = 73. 
i -  I i - l  i-  1 i- I i- 1 

II 

= 0.' 4 

1 Since r is close to 1, there is a strong linear relationship between these two contaminants. 
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2.3 . GRAPHICAL REPRESENTATIONS 

,- n 

2.3.1 Histogram/Frequency Plots 

Two of the oldest methods for summarizing data distributions are the frequency plot (Figure 2.3-1) 
and the histogram (Figure 2.3-2). Both the histogram and the frequency plot use the same basic principles to 
display the data: dividing the data range into units, counting the number of points within the units, and 
displaying the data as the height or area within a bar graph. There are slight differences between the 
histogram and the frequency plot. In the frequency plot, the relative height of the bars represents the relative 
density of the data. In a histogram, the area within the bar represents the relative density of the data. The 
difference between the two plots becomes more distinct when unequal box sizes are used. 

"0 5 10 15 20 25 30 35 40 
Concenbation (ppm) 

Figure 2.3-1. Example of a Frequency Plot 

a E 1 , , , , I  , , , ,  I 
0 5 10 15 20 25 30 35 40 

ConcenWon (ppm) 

:0 

Figure 2.3-2. Example of a Histogram 

The histogram and frequency plot provide a means of assessing the symmetry and variability of the 
data. If the data are symmetric, then the structure of these plots will be symmetric around a central point such 
as a mean. The histogram and frequency plots will generally indicate if the data are skewed and the direction 
of the skewness. 

Directions for generating a histogram and a frequency plot are contained in Box 2.3-1 and an 
example is contained in Box 2.3-2. When plotting a histogram for a continuous variable (e.g., concentration), 
it is necessary to decide on an endpoint convention; that is, what to do with cases that fall on the boundary of 
a box. With discrete variables, (e.g., family size) the intervals can be centered in between the variables. For 
the family size data, the intervals can span between 1.5 and 2.5,2.5 and 3.5, and so on, so that the whole 
numbers that relate to the family size can be centered within the box. The visual impression conveyed by a 
histogram or a frequency plot can be quite sensitive to the choice of interval width. The choice of the number 
of intervals determines whether the histogram shows more detail for small sections of the data or whether the 
data will be displayed more simply as a smooth overview of the distribution, 

. 
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Box 2.3-1: Directions for Generating a Histogram and a Frequency Plot 

Let X,, X,, ..., X, represent the n data points. To develop a histogram or a frequency plot: 

STEP 1 : Select intervals that cover the range of observations. If possible, these intervals should have equal 
widths. A rule of thumb is to have between 7 to 11 intervals. If necessary, specify an endpoint 
convention, Le., what to do with cases that fall on interval endpoints. 

STEP 2: Compute the number of observations within each interval. For a frequency plot with equal interval 
sizes, the number of observations represents the height of the boxes on the frequency plot. 

STEP 3: Determine the horizontal axis based on the range of the data. The vertical axis for a frequency plot 
is the number of observations. The vertical axis of the histogram is based on percentages. 

STEP 4: For a histogram, compute the percentage of observations within each interval by dividing the 
number of observations within each interval (Step 3) by the total number of observations. 

STEP 5: For a histogram, select a common unit that corresponds to the x-axis. Compute the number of 
common units in each interval and divide the percentage of observations within each interval (Step 
4) by this number. This step is only necessary when the intervals (Step 1) are not of equal widths. 

STEP 6: Using boxes, plot the intervals against the results of Step 5 for a histogram or the intervals against 
the number of observations in an interval (Step 2) for a frequency plot. 

Box 2.3-2: Example of Generating a Histogram and a Frequency Plot 

Consider the following 22 samples of a contaminant concentration (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6, 
17.2 19.1, c4, 7.2, <4, 15.2, 14.7, 14.9, 10.9, 12.4, 12.4, 11.6, 14.7, 10.2, 5.2, 16.5, and 8.9. 

STEP 1 : This data spans 0 - 40 ppm. Equally sized intervals of 5 ppm will be used: 0 - 5 ppm; 5 - 10 ppm; 
etc. The endpoint convention will be that values are placed in the highest interval containing the 
value. For example, a value of 5 ppm will be placed in the interval 5 - 10 ppm instead of 0 - 5 ppm. 

STEP 2: The table below shows the number of observations within each interval defined in Step 1. 

STEP 3: The horizontal axis for the data is from 0 to 40 ppm. The vertical axis for the frequency plot is from 
0 - 10 and the vertical axis for the histogram is from 0% - 10%. 

STEP 4: There are 22 observations total, so the number observations shown in the table below will be 
divided by 22. The results are shown in column 3 of the table below. 

STEP 5: A common unit for this data is 1 ppm. In each interval there are 5 common units so the 
percentage of observations (column 3 of the table below) should be divided by 5 (column 4). 

STEP 6: The frequency plot is shown in Figure 2.3-1 and the histogram is shown in Figure 2.3-2. 

Interval 
0 -  5ppm 
5 - 10 ppm 

10 - 15 pprn 
15 - 20 ppm 
20 - 25 ppm 
25 - 30 ppm 
30 - 35 ppm 
35 - 40 ppm 

# of Obs 
in Interval 

2 
3 
8 
6 
1 
1 
0 
1 

% of Obs 
in Interval 

9.10 
13.60 
36.36 
27.27 
4.55 
4.55 
0.00 
4.55 

% of Obs 
per m m  

1.8 
2.7 
7.3 
5.5 
0.9 
0.9 
0.0 
0.9 
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2.3.2 Stem-and-Leaf Plot 

The stem-and-leaf plot is used to show both the numerical values themselves and information about 
the distribution of the data. I t  is a useful method for storing data in a compact form while, at the same time, 
sorting the data from smallest to largest. A stem-and-leaf plot can be more useful in analyzing data than a 
histogram because it not only allows a visualization of the data distribution, but enables the data to be 
reconstructed and lists the observations in the order of magnitude. However, the stem-and-leaf plot is one of 
the more subjective visualization techniques because it requires the analyst to make some arbitrary choices 
regarding a partitioning of the data. Therefore, this technique may require some practice or trial and error 
before a useful plot can be created. As a result, the stem-and-leaf plot should only be used to develop a 
picture of the data and its characteristics. Directions for constructing a stem-and-leaf plot are given in Box 
2.3-3 and an example is contained in Box 2.3-4. 

Each observation in the stem-and-leaf plot consist of two parts: the stem of the observation and the 
leaf. The stem is generally made up of the leading digit of the numerical values while the leaf is made up of 
trailing digits in the order that corresponds to the order of magnitude from left to right. The stem is displayed 
on the vertical axis and the data points make up the leaves. Changing the stem can be accomplished by 
increasing or decreasing the digits that are used, dividing the groupings of one stem (i.e., all numbers which 
start with the numeral 6 can be divided into smaller groupings), or multiplying the data by a constant factor 
(i.e., multiply the data by 10 or 100). Nondetects can be placed in a single stem. 

A stem-and-leaf plot roughly displays the distribution of the data. For example, the stem-and-leaf 
plot of normally distributed data is approximately bell shaped. Since the stem-and-leaf roughly displays the 
distribution of the data, the plot may be used to evaluate whether the data are skewed or symmetric. The top 
half of the stem-and-leaf plot will be a mirror image of the bottom half of the stem-and-leaf plot for 
symmetric data. Data that are skewed to the left will have the bulk of data in the top of the plot and less data 
spread out over the bottom of the plot. 

2.3.3 Box and Whisker Plot 

A box and whisker plot or box plot (Figure 2.3-3) is a schematic 
diagram useful for visualizing important statistical quantities of the data. Box 
plots are useful in situations where it is not necessary or feasible to portray all 
the details of a distribution. Directions for generating a box and whiskers plot 
are contained in Box 2.3-5, and an example is contained in Box 2.3-6. 

A box and whiskers plot is composed of a central box divided by a line 
and two lines extending out from the box called whiskers. The length of the 
central box indicates the spread of the bulk of the data (the central 50%) while 
the length of the whiskers show how stretched the tails of the distribution are. 
The width of the box has no particular meaning; the plot can be made quite 
narrow without affecting its visual impact. The sample median is displayed as a 
line through the box and the sample mean is displayed using a '+' sign. Any 
unusually small or large data points are displayed by a '*' on the plot. A box 
and whiskers plot can be used to assess the symmetry of the data. Ifthe 
distribution is symmetrical, then the box is divided in two equal halves by the 

m 

1 
t 

-r 
m 

median, the whiskers will be the same length and the number of extreme data Figure 2.3-3. Example 
points will be distributed equally on either end of the plot. of a Box and Whisker 

Plot 
EPA QAIG-9 2.3 - 3 QA96 



Box 2.3-3: Directions for Generating a Stem and Leaf Plot 

Let X,, X,, ..., X, represent the n data points. To develop a stem-and-leaf plot, complete the following steps: 

STEP 1 : Arrange the observations in ascending order. The ordered data is usually labeled (from smallest to 
largest) >co, &), ..., X("). 

Choose either one or more of the leading digits to be the stem values. As an example, for the value 16, 
1 could be used as the stem as it is the leading digit. 

List the stem values from smallest to largest at the left (along a vertical axis). Enter the leaf (the 
remaining digits) values in order from lowest to highest to the right of the stem. Using the wlue 16 as a 
example, if the 1 is the stem then the 6 will be the leaf. 

STEP 2: 

STEP 3: 

I' 

Box 2.34: Example of Generating a Stem and Leaf Plot 

Considerthe following 22 samples of trifluorine (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6, 17.2 19.1, <4, 7.2, <4, 15.2, 
14.7, 14.9, 10.9, 12.4, 12.4, 11.6, 14.7, 10.2, 5.2, 16.5, and 8.9. 

STEP 1: Arrange the observations in ascending order: <4, <4, 5.2, 7.7, 8.9, 10.2, 10.9, 11.6, 12.4, 12.4, 14.7, 
14.7, 14.9, 15.2, 16.5, 17.4, 17.7, 19.1, 22.8,28.6, 35.5. 

Choose either one or more of the leading digits to be the stem values. For the above data, using the fir: 
digit as the stem'does not provide enough detail for analysis. Therefore, the first digit will be used as a 
stem; however, each stem will have two rows, one for the leaves 0 - 4, the other for the leaves 5 - 9. 

STEP 2: II : 

<4 <4 
5.2 7.7 8.9 
0.2 0.9 1.6 2.4 2.4 4.7 4.7 4.9 
5.2 6.5 7.4 7.7 9.1 
2.8 
8.6 

5.5 

Note: If nondetects are present, place them first in the ordered list, using a symbol such as cL. If multiple detc 
limits were used, place the nondetects in increasing order of detection limits, using symbols such as cL1, <L2, 
If the first stem extends from zero to a value above the detection limit, then nondetects can be placed in this ini 
as shown in the example above. Otherwise, special intervals dedicated to nondetects can be used. 
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Box 2.3-5: Directions for Generating a Box and Whiskers Plot 

STEP 1 : Set the vertical scale of the plot based on the maximum and minimum values of the data set. Select a 
width for the box plot keeping in mind that the width is only a visualization tool. Label the width w; the 
horizontal scale then ranges from -%W to %W. 

Compute the upper quartile (Q(.75), the 73' percentile) and the lower quartile (Q(.25), the 29 
percentile) using Box 2.2-1. Compute the sample mean and median using Box 2.2-2. Then, compute 
the interquartile range (IQR) where IQR = Q(.75) - Q(.25). 

Draw a box through points ( -%W, Q(.75) ), ( -%W, Q (.25) ), ( %W, Q(.25) ) and ( %W, Q(.75) ). Draw 
a line from (%W, Q(.5)) to (-%W, Q(.5)) and mark point (OF) with (+). 

Compute the upper end of the top whisker by finding the largest data value X less than 
Q(.75) + 1.5( Q(.75) - Q(.25) ). Draw a line from (0, Q(.75)) to (0, X). 

Compute the lower end of the bottom whisker by finding the smallest data value Y greater than 
Q(.25) - 1.5( Q(.75) - Q(.25) ). Draw a line from (0, Q(.25))'to (0, Y). 

For all points X* > X, place an asterisk (*) at the point (0, X*). 

For all points Y* c Y, place an asterisk (*) at the point (0, Y*). 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

Box 2.3-6. Example of a Box and Whiskers Plot 

Consider the following 22 samples of trifluorine (in ppm) listed in order from smallest to largest: 4.0,6.1,9.8, 10.7, 
10.8, 11.5, 11.6, 12.4, 12.4, 14.6, 14.7, 14.7, 16.5, 17, 17.5, 20.6, 20.8, 25.7, 25.9, 26.5,32.0, and 35.5. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

The data ranges from 4.0 to 35.5 ppm. This is the range of the vertical axis. Arbitrarily, a width of 4 will 
be used for the horizontal axis. 

Using the formulas in Box 2.2-2, the sample mean = 16.87 and the 
median = 14.70. Using Box 2.2-1, Q(.75) = 20.8 and Q(.25) = 11.5. 
Therefore, IQR = 20.8 - 11.5 = 9.3. 

40: 

35; m 

In the figure, a box has been drawn through points ( -2,20.8), (-2, 11.5), 
( 2 ,  11.5), (2,20.8). A line has been drawn from ( - 2 ,  14.7) to ( 2 ,  14.7), 
and the point (0, 16.87) has been marked with a I+' sign. 

Q(.75) + 1.5(9.3) = 34.75. The closest data value to this number, but less 
than it, is 32.0. Therefore, a line has been drawn in the figure from 
(0, 20.8) to (0,  32.0). 15 

Q(.25) - 1.5( 9.3 ) = -2.45. The closest data value to this number, but greater 

( 0,4) to ( 0, 11 5). 

10 1 

51 

0' 

than it, is 4.0. Therefore, a line has been drawn in the figure from 

There is only 1 data value greater than 32.0 which is 35.5. Therefore, the 
point ( 0, 35.5) has been marked with an asterisk. There are no data values 
less than 4.0. 

EPA QA/G-9 2.3 - 5 QA96 



2.3.4 Ranked Data Plot 

A ranked data plot is a useful graphical representation that is easy to construct, easy to interpret, and 
makes no assumptions about a model for the data. The analyst does not have to make any arbitrary choices 
regarding the data to construct a ranked data plot (suckas cell sizes for a histogram). In addition, a ranked 
data plot displays every data point; therefore, it is a graphical representation of the data instead of a summary 
of the data. Directions for developing a ranked data plot are given in Box 2.3-7 and an example is given in 
BOX 2.3-8. 

A ranked data plot is a plot of the data from smallest to largest at evenly spaced intervals (Figure 
2.3-4). This graphical representation is very similar to the quantile plot described in section 2.3.5. A ranked 
data plot is marginally easier to generate than a quantile plot; however, a ranked data plot doe: not contain as 
much information as a quantile plot. Both plots can be used to determine the density of the data points and 

the skewness of the data; however, a quantile plot contains information on the quaitiles of the data whereas a 
ranked data plot does not. 

r 

v ) .  
0 a 

s -  
0 -  . .............. ....... .......... 

I . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . , I ,  

Smallest * Largest 

Figure 2.3-4 Example of a Ranked Data Plot 

A ranked data plot can be used to determine the density of the data values, Le., if all the data values 
are close to the center of the data with relatively few values in the tails or if there is a large amount of values 
in one tail with the rest evenly distributed. The density of the data is displayed through the slope of the graph. 
A large amount of data values has a flat slope, Le., the graph rises slowly. A small amount of data values has 

a large slope, i.e., the graph rises quickly. Thus the analyst can determine where the data lie, either evenly 
distributed or in large clusters of points. In Figure 2.3-4, the data rises slowly up to a point where the slope 
increases and the graph rises relatively quickly. This means that there is a large amount of small data values 
and relatively few large data values. 

A ranked data plot can be used to determine if the data are skewed or if they are symmetric. A 
ranked data plot of data that are skewed to the right extends more sharply at the top giving the graph a 
convex shape. A ranked data plot of data that are skewed to the left increases sharply near the bottom giving 
the graph a concave shape. If the data are symmetric, then the top portion of the graph will stretch to upper 
right corner in the same way the bottom portion of the graph stretches to lower left, creating a s-shape. 
Figure 2.3-4 shows a ranked data plot of data that are skewed to the right. 
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Box 2.3-7: Directions for Generating a Ranked Data Plot 

Let X,, X,, ..., X, represent the n data points. Let Ti,, for i=l to n, 
be the data listed in order from smallest to largest so that 6 ) (i = 1) 
is the smallest, 5 , )  (i = 2) is the second smallest, and &, (i = n) is 
the largest. To generate a ranked data plot, plot the ordered X 
values at equally spaced intervals along the horizontal axis. 

40 

35 

30 
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-20 
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2.3.5 Quantile Plot 

A quantile plot (Figure 2.3-5) is a graphical representation of the data that is easy to construct, easy 
to interpret, and makes no assumptions about a model for the data. The analyst does not have to make any 
arbitrary choices regarding the data to construct a quantile plot (such as cell sizes for a histogram). In 
addition, a quantile plot displays every data point; therefore, it is a graphical representation of the data 
instead of a summary of the data. 

A quantile plot is a graph of the quantiles (section 2.2.1) of the data. The basic quantile plot is 
visually identical to a ranked data plot except its horizontal axis varies from 0.0 to 1 .O, with each point 
plotted according to the fraction of the points it exceeds. This allows the addition of vertical lines indicating 
the quartiles or, any other quantiles of interest. Directions for developing a quantile plot are &en in Box 
2.3-9 and an example is given in Box 2.3-10. 

lnterquartile Range 4 t- 
Lower Upper 
Quartile Quartile - t- 

t k  I I Median 

0' I I I I 

0 0.2 0.4 0.6 
Fraction of Data (f-values) 

- 
0.8 1 

Figure 2.3-5. Example of a Quantile Plot of Skewed Data 

A quantile plot can be used to read the quantile information such as the median, quartiles, and the 
interquartile range. In addition, the plot can be used to determine the density of the data points, e.g., are all 
the data values close to the center with relatively few values in the tails or are there a large amount of values 
in one tail with the rest evenly distributed? The density of the data is displayed through the slope of the 
graph. A large amount of data values has a flat slope, Le., the graph rises slowly. A small amount of data 

values has a large slope, i.e., the graph rises quickly. A quantile plot can be used to determine if the data are 
skewed or if they are symmetric. A quantile plot of data that are skewed to the right is steeper at the top right 
than the bottom left, as in Figure 2.3-5. A quantile plot of data that are skewed to the left increases sharply 
near the bottom left of the graph. I f  the data are symmetric then the top portion of the graph will stretch to 

the upper right corner in the same way the bottom portion of the graph stretches to the lower left, creating an 
s-s hape . 
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Box 2.3-9: Directions for Generating a Quantile Plot 

Let X,, X,, ..., X, represent the n data points. To obtain a quantile plot, let &, for 
i = 1 to n, be the data listed in order from smallest to largest so that &)  (i = 1) is 
the smallest, >(1*, (i = 2) is the second smallest, and >En, (i = n) is the largest. For 
each i, compute the fraction f= (i - 0.5)ln. The quantile plot is a plot of the pairs 
(f,, X,i ,), with straight lines connecting consecutive points. 

Box 2.3-10: Example of Generating a Quantile Plot 

Consider the following 10 data points: 4 ppm, 5 ppm, 6 ppm, 7 ppm, 4 ppm, 10 ppm, 4 ppm. 5 ppm, 7 ppm, 
and 8 ppm. The data ordered from smallest to largest, &), are shown in the first column of the table below 
and the ordered number for each observation, i, is shown in the second column. The third column displays the 
values f for each i where f= (i - 0.5)/n. 

& i )  - i & 
4 1 0.05 
4 2 0.15 
4 3 0.25 
5 4 0.35 
5 5 0.45 

&i)  i I & 
6 6 0.55 
7 7 0.65 
7 8 0.75 
8 . 9  0.85 
10 10 0.95 

The pairs (f, X,,,) are then plotted to yield the following quantile plot: 

I I I I I I 
0 0.2 0.4 0.6 0.8 1 

Fraction of Data (f-values) 

Note that the graph curves upward; therefore, the data appear to be skewed to the right. 
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2.3.6 Normal Probability Plot (Quantile-Quantile Plot) 

There are two types of quantile-quantile plots or q-q plots. The first type, an empirical quantile- 
quantile plot (section 2.3.7.4), involves plotting the quantiles of two data variables ,against each other. The 
second type of a quantile-quantile plot, a theoretical quantile-quantile plot, involves graphing the quantiles of 
a set of data against the quantiles of a specific distribution. The following discussion will focus on the most 
common of these plots for environmental data, the normal probability plot (the normal q-q plot); however, the 
discussion holds for other q-q plots. The normal probability plot is used to roughly determine how well the 
data set is modeled by a normal distribution. Formal tests are contained in Chapter 4, section 2. Directions 
for developing a normal probability plot are given in Box 2.3-1 1 and an example is given in Box 2.3-12. 

A normal probability plot is the graph of the quantiles of a data set against the quantiks of the 
normal distribution using normal probability graph paper (Figure 2.3-6). If the graph is linear, the data may 
be normally distributed. If the graph is not linear, the departures from linearity give important information 
about how the data distribution deviates from a normal distribution. 

If the graph of the normal probability plot is not linear, the graph may be used to determine the 
degree of symmetry (or asymmetry) displayed by the data. If the data are skewed to the right, the graph is 
convex. If the data are skewed to the left, the graph is concave. If the data in the upper tail fall above and the 
data in the lower tail fall below the quartile line, the data are too slender to be well modeled by a normal 
distribution, i.e., there are fewer values in the tails of the data set than what is expected from a normal 
distribution. If the data in the upper tail fall below and the data in the lower tail fall above the quartile line, 
then the tails of the data are too heavy to be well modeled using a normal distribution, Le., there are more 
values in the tails of the data than what is expected from a normal distribution. A normal probability plot can 
be used to identify potential outliers. A data value (or a few data values) much larger or much smaller than 
the rest will cause the other data values to be compressed into the middle of the graph, ruining the resolution. 

Box 2.3-1 I : Directions for Constructing a Normal Probability Plot 

Let X,, X,, ..., X, represent the n data points. 

STEP 1 : For each data value, compute the absolute frequency, /+E The absolute frequency is the number 
of times each value occurs. For distinct values, the absolute frequency is 1. For non-distinct 
observations, count the number of times an observation occurs. For example, consider the data 1, 
2, 3, 3. The absolute frequency of value 1 is 1 and the absolute frequency of value 2 is 1. The 
absolute frequency of value 3 is 2 since 3 appears 2 times in the data set. 

STEP 2: Compute the cumulative frequencies, Cc The cumulative frequency is the number of data points 

that are less than or equal to & i.e., CFi = CAT. Using the data given in step 2, the 

cumulative frequency for value 1 is 1, the cumulative frequency for value 2 is 2 (1 +I), and the 
cumulative frequency for value 3 is 4 (1 +I +2). 

i 

j -  I 

CFi 
STEP 3: Compute = 100 x - and plot the pairs ('(, Xi) using normal probability paper (Figure 

2.3-6). If the graph of these pairs approximately forms a straight line, then the data are probably 
normally distributed. Othewise, the data may not be normally distributed. 
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Box 2.3-12: Example of Normal Probability Plot 

Consider the following 15 data points: 5, 5,6, 6, 8 ,  8 ,  9, 10, 10, 10, 10, 10, 12, 14, and 15. 

STEP 1: Because the value 5 appears 2 times, its absolute frequency is 2. Similarly, the absolute frequency of t  
2, of 8 is 2, of 9 is 1, of 10 is 5, etc. These values are shown in the second column of the table below. 

The cumulative frequency of the data value 8 is 6 because there are 2 values of 5, 2 values of 6, and 2 
values of 8. The cumulative frequencies are shown in the'!holumn of the table. 

The values Ui = 100 x (-)for each data point are shown in column 4 of the table below. A plot a 

these pairs (v, Xi) using normal probability paper is also shown below. 

STEP 2: 

CF. 
n+l  

STEP 3: 

Individual 

10 
12 
14 
15 

Absolute 

1 

Cumulative 
Frequency CF, 

2 
4 
6 
7 
12 
13 
14 
15 

y,  

12.50 
25.00 
37.50 
43.75 
75.00 
81.25 
87.50 
93.75 

X 

" 2  5 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0  90 85 93 

Y 
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2.3.7 Plots for Two or More Variables 

Data often consist of measurements of several characteristics (variables) for each sample point in the 
data set. For example, a data set may consist of measurements of weight, sex, and age for each animal in a 
sample or may consist of daily temperature readings for several cities. In this case, graphs may be used to 
compare and contrast different variables. For example, the analyst may wish to compare and contrast the 
temperature readings for different cities, or different sample points (each containing several variables) such 
the height, weight, and sex across individuals in a study. 

To compare and contrast individual data points, some special plots have been developed to display 
multiple variables. These plots are discussed in section 2.3.7.1. To compare and contrast several variables, 
collections of the single variable displays described in previous sections are useful. For example, the analyst 
may generate box and whisker plots or histograms for each variable using the same axis for all of the 
variables. Separate plots for each variable may be overlaid on one graph, such as overlaying quantile plots 
for each variable on one graph. Another useful technique for comparing two variables is to place the stem 
and leaf plots back to back. In addition, some special plots have been developed to display two or more 
variables. These plots are described in sections 2.3.7.2 through 2.3.7.4. 

2.3.7.1 Plots for Individual Data Points 

Since it is difficult to visualize data in more than 2 or 3 dimensions, most of the plots developed to 
display multiple variables for individual data points involve representing each variable as a distinct piece of a 
two-dimensional figure. Some such plots include Profiles, Glyphs, and Stars (Figure 2.3-7). These graphical 
representations start with a specific symbol to represent each data point, then modify the various features of 
the symbol in proportion to the magnitude of each variable. The proportion of the magnitude is determined 
by letting the minimum value for each variable be of length 0, the maximum be of length 1. The remaining 
values of each variable are then proportioned based on the magnitude of each value in relation to the 
maximum and minimum. 

I i 

Figure 2.3-7. Example of Graphical Representations of Multiple 
Variables 

A profile plot starts with a line segment of a fixed length. Then lines spaced an equal distance apart 
and extended perpendicular to the line segment represent each variable. A glyph plot uses a circle of fixed 
radius. From the perimeter, parallel rays whose sizes are proportional to the magnitude of the variable extend 
from the top half of the circle. A star plot starts with a point where rays spaced evenly around the circle 
represent each variable and a polygon is then drawn around the outside edge of the rays. 
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2.3.7.2 Scatter Plot 

relationship between two variables. Both 
potential outliers from a single variable and 
potential outliers from the paired variables 

the two variables. Scatter plots of highly 
linearly correlated variables cluster 
compactly around a straight line. In 

on a scatter plot. For example, consider two 

may be identified on this plot. A scatter 
plot also displays the correlation between 

addition, nonlinear patterns may be obvious 

variables where one variable is 
approximately equal to the square of the 

other. A scatter plot of this data would 
display a u-shaped (parabolic) curve. 

For data sets consisting of paired observations where two or more continuous variables are measured 
for each sampling point, a scatter plot is one of the most powerful tools for analyzing the relationship 
between two or more variables. Scatter plots are easy to construct for two variables (Figure 2.3-8) and many 
computer graphics packages can construct 3-dimensional scatter plots. Directions for constructing a scatter 
plot for two variables are given in Box 2.3-13 along with an example. 

40 r 
s x  

30 - 

s -  
U 
U 

z 2 0  - m 
0 
n .  x 

m x  
10 - x 

p x " ;  
x i $ *  , + m ,  I 

O O  2 4 6 8 
Chromium VI (ppb) 

Box 2.3-13: Directions for Generating a Scatter Plot and an Example 

Let X,, X,, ..., X,, represent one variable of the n data points and let y, Y,, ..., Y, represent a second variable of 
the n data points. The paired data can be written as QY,) for i = 1, ..., n. To construct a scatter plot, plot the 
first variable along the horizontal axis and the second variable along the vertical axis. It does not matter which 
variable is placed on which axis. 

Example: A scatter plot will be developed for the data below. PCE values are displayed on the vertical axis an 
Chromium VI values are displayed on the horizontal axis of Figure 2.3-8. 

PCE 
(PPb) 

2.23 
3.51 
6.42 
2.98 
3.04 
12.60 
3.56 
7.72 

1 

Chromium 
VI (PPb) 

0.77 
1.24 
3.48 
1.02 
1.15 
5.44 
2.49 
3.01 

PCE 
(PPb) 

4.14 
3.26 
5.22 
4.02 
6.30 
8.22 
1.32 
7.73 
5.88 

Chromium 
VI (DDb) 

2.36 
0.68 
0.65 
0.68 
1.93 
3.48 
2.73 
1.61 
1.42 
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2.3.7.3 Extensions of the Scatter Plot 

It is easy to construct a 2-dimensional scatter plot by hand and many software packages can construct 
a useful 3-dimensional scatter plot. However, with more than 3 variables, it is difficult to construct and 
interpret a scatter plot. Therefore, several graphical representations have been developed that extend the idea 
of a scatter plot for data consisting of 2 or more variables. 

The simplest of these graphical 
representations is a coded scatter plot. 
In this case, all possible pairs of data are 

given a code and plotted on one scatter 
plot. For example, consider a data set of 
3 variables: variable A, variable B, and 
variable C. Using the first variable to 
designate the horizontal axis, the analyst 
may choose to display the pairs (A, B) 
using an X, the pairs (A, C) using a Y, 
and the pairs (B, C) using a Z on one 
scatter plot. All of the information 
described above for a scatter plot is also 

00 

30 

Chromium vs. PCE 

Alrazine vs. PCE 

0 

10 

0 
0 10 20 

(PPW 

available on a coded scatter plot. 
However, this method assumes that the 
ranges of the three variables are 
comparable and does not provide information on three-way or higher interactions between the variables. An 
example of a coded scatter plot is given in Figure 2.3-9. 

I 
Figure 2.3-9. Example of a Coded Scatter Plot 

A parallel coordinate plot also extends the idea of a scatter plot to higher dimensions. The parallel 
coordinates method employs a scheme where coordinate axes are drawn in parallel (instead of perpendicular). 
Consider a sample point X consisting of values X , for variable 1, X for variable 2, and so on up to X for 
variable p. A parallel coordinate plot 
is constructed by placing an axis for 
each of the p variables parallel to 
each other and plotting X I on axis 1 , 
X, on axis 2, and so on through X 
on axis p and joining these points 
with a broken line. This method 
contains all of the information 
available on a scatter plot in addition 
to information on 3-way and higher 
interactions (e.g., clustering among 
three variables). However, for p 
variables one must construct (p+1)/2 
parallel coordinate plots in order to 
display all possible pairs of variables. 
An example of a parallel coordinate 
plot is given in Figure 2.3- 10. 

Data Values for 
Variable 1 

Data Values for 
Variable 2 

Dala Values for 
Variable 3 1 2 3 4 5 6 7 

I 

Figure 2.3-10. Example of a Parallel Coordinates Plot 
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A scatter plot matrix is another useful method of extending scatter plots to higher dimensions. In 
this case, a scatter plot is developed for all possible pairs of the variables which are then displayed in a matrix 
format. This method is easy to implement and provides a concise method of displaying the individual scatter 
plots. However, this method does not contain information on 3-way or higher interactions between variables. 
An example of a scatter plot matrix is contained in Figure 2.3- 1 1. 

40 

g 3 0  

5 

E .  

Q - 
5 20 - 

14 + 
Q 12[ 10 ++ + 

- Chromium IV (ppb) ++ 
- 

+ - 

I 

0 10 20 30 40 
Chromium IV (ppb) 

12 + 

I I 
0 2 4 6 8 1 0 1 2 1 4  

Atrazine (ppb) 

Figure 2.3-11. Example of a Matrix Scatter Plot 

2.3.7.4 Empirical Quantile-Quantile Plot 

An empirical quantile-quantile (q-q) plot involves plotting the quantiles of two data variables against 
each other. This plot is used to compare distributions of two or more variables; for example, the analyst may 

wish to compare the distribution of lead and iron samples from a drinking water well. This plot is similar in 
concept to the theoretical quantile-quantile plot and yields similar information in regard to the distribution of 
two variables instead of the distribution of one variable in relation to a fixed distribution. Directions for 
constructing an empirical q-q plot with an example are given in Box 2.3-14. 

An empirical q-q plot is the graph of the quantiles of one variable of a data set against the quantiles 
of another variable of the data set. This plot is used to determine how well the distribution of the two 
variables match. If the distributions are roughly the same, the graph is linear or close to linear. If the 
distributions are not the same, than the graph is not linear. Even if the graph is not linear, the departures from 
linearity give important information about how the two data distributions differ. For example, a q-q plot can 
be used to compare the tails of the two data distributions in the same manner a normal probability plot was 
used to compare the tails of the data to the tails of a normal distribution. In addition, potential outliers (from 
the paired data) may be identified on this graph. 
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Box 2.3-14: Directions for Constructing an Empirical Q-Q Plot with an Example 

Let XI, X,, ..., X, represent n data points of one variable and let )1. Y,, ..., Y, represent a second variable of m 
data points. Let 5i,,.for i = 1 to n, be the first variable listed in order from smallest to largest so that,& (i = 1) 
is the smallest, 5 , )  (I = 2) is the second smallest, and 
second variable listed in order from smallest to largest so that X, (i = 1) is the smallest, y2)  (i = 2) is the 
second smallest, and L;,,,, (i = m) is the largest. 

(i = n) is the largest. Let yi,, fori = 1 to n, be the 

If m = n: If the two variables have the same number of observations, then an empirical q-q plot of the two 
variables is simply a plot of the ordered values of the variables. Since n=m, replace m by n. A plot of the pairs 
(X,l,, Y,,,), (X,,,, Y,,,), ..., (X,,,, Y,,,) is an empirical quantile-quantile plot. 

If n > rn: If the two variables have a different number of observations, then the empirical quantile-quantile plot 
will consist of m (the smaller number) pairs. The empirical q-q plot will then be a plot of the ordered Y values 
against the interpolated X values. For i = 1, i = 2, ..., i = m, let v = (n/m)(i - 0.5) + 0.5 and separate the result 
into the integer part and the fractional part, Le., let v = j + g where j is the integer part and g is the fraction part. 
If g = 0, plot the pair el),, X(l,). Otherwise, plot the pair (y,,, (l-g)+,, + g+,+,,). A plot of these pairs is an 
empirical quantile-quantile plot. 

Example Consider two sets of contaminant readings from two separate drinking water wells at the same site. 
The data from well 1 are: 1.32, 3.26,3.56, 4.02,4.14, 5.22, 6.30, 7.72, 7.73, and 8.22. The data from well 2 
are: 0.65, 0.68, 0.68, 1.42, 1.61, 1.93, 2.36, 2.49,2.73, 3.01, 3.48, and 5.44. An empirical q-q plot will be 
used to compare the distributions of these two wells. Since there are 10 observations in well 1 , and 12 
observations in well, the case for I# m will be used. Therefore, for i = 1,2, ..., 10, compute: 

i = 1 : v = -( 1 -.5)+.5 = 1.1 so j=l and g=.1. Since go, plot (1.32,(.9).65+(.1).68)=(1.32, 0.653) 12 
10 - 

12 
10 

- i = 2: v = -(2-.5)+.5 = 2.3 so j=2 and g=.3. Since 90, plot (3.26,(.7).68+(.3).68)=(3.26, 0.68) 

12 
10 

i = 3: v = -(3 -.5)+.5 = 3.5 so j=3 and g=.5. Since PO, plot (3.56,(.5).68+(.5)1.42)=(3.56,1.05) 

Continue this process fori =4, 5, 6, 7, 8, 9, and 10 to yield the following 10 data pairs (1.32,0.653), (3.26, 
0.68), (3.56, 1.05), (4.02, 1.553), (4.14, 1.898), (5.22, 2.373), (6.30, 2.562), (7.72, 2.87), (7.73, 3.339), and 
(8.22, 5.244). These pairs are plotted below, along with the best fitting regression line. 

- 

"0 2 4 6 8 10 
Quantiles of Well I 

This graph indicates the variables behave roughly the same since there are no substantial deviations from the 
fitted line. 
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2.3.8 Plots for Temporal Data 

Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have a temporal 
component. For example, air monitoring measurements of a pollutant may be collected once a minute or Once 
a day; water quality monitoring measurements of a contaminant level may be collected weekly or monthly. 
An analyst examining temporal data may be interested in the trends over time, correlation among time 

periods, and cyclical patterns. Some graphical representations specific to temporal data are the time plot, 
correlogram, and variogram. 

Data collected at regular time intervals are called time series. Time series data may be analyzed 
using Box-Jenkins modeling and spectral analysis. Both of these methods require a large amount of data 
collected at regular intervals and are beyond the scope of this guidance. It is recommended tkat the interested 
reader consult a statistician. 

The graphical representations presented in this section are recommended for all data that have a 
temporal component regardless of whether formal statistical time series analysis will be used to analyze the 
data. If the analyst uses a time series methodology, the graphical representations presented below will play 
an important role in this analysis. If the analyst decides not to use time series methodologies, the graphical 
representations described below will help identify temporal patterns that need to be accounted for in the 
analysis of the data. 

The analyst examining temporal environmental data may be interested in seasonal trends, directional 
trends, serial correlation, and stationarity. Seasonal trends are patterns in the data that repeat over time, i.e:, 
the data rise and fall regularly over one or more time periods. Seasonal trends may be large scale, such as a 
yearly trend where the data show the same pattern of rising and falling over each year, or the trends may be 
small scale, such as a daily trend where the data show the same pattern for each day. Directional trends are 
downward or upward trends in the data which is of importance to environmental applications where 
contaminant levels may be increasing or decreasing. Serial correlation is a measure of the extent to which 
successive observations are related. If successive observations are related, statistical quantities calculated 
without accounting for serial correlation may be biased. Finally, another item of interest for temporal data is 
stationarity (cyclical patterns). Stationary data look the same over all time periods. Directional trends and 
increasing (or decreasing) variability among the data imply that the data’are not stationary. 

’ 

Temporal data are sometimes used in environmental applications in conjunction with a statistical 
hypothesis test to determine if contaminant levels have changed. If the hypothesis test does not account for 
temporal trends or seasonal variations, the data must achieve a “steady state” before the hypothesis test may 
be performed. Therefore, the data must be essentially the same for comparable periods of time both before 
and after the hypothesized time of change. 

Sometimes multiple observations are taken in each time period. For example, the sampling design 
may specify selecting 5 samples every Monday for 3 months. If this is the case, the time plot described in 
section 2.3.8.1 may be used to display the data, display the mean weekly level, display a confidence interval 
for each mean, or display a confidence interval for each mean with the individual data values. A time plot of 
all the data can be used to determine if the variability for the different time periods changes. A time plot of 
the means can be used to determine if the means are possibly changing between time periods. In addition, 
each time period may be treated as a distinct variable and the methods of section 2.3.7 may be applied. 
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2.3.8.1 Time Plot 

One of the simplest plots to generate that provides a large amount of information is a time plot. A 
time plot is a plot of the data over time. This plot makes it easy to identify large-scale and small-scale trends 
over time. Small-scale trends show up on a time plot as fluctuations in smaller time periods. For example, 
ozone levels over the course of one day typically rise until the afternoon, then decrease, and this process is 
repeated every day. Larger scale trends, such as seasonal fluctuations, appear as regular rises and drops in 
the graph. For example, ozone levels tend to be higher in the summer than in the winter so ozone data tend to 
show both a daily trend and a seasonal trend. A time plot can also show directional trends and increased 
variability over time. Possible outliers may also be easily identified using a time plot. 

0; ' ' ' ' 5 ' ' ' '10' ' ' '15 '  ' ' '2'0 ' ' '2'5' ' ' ' io'  ' ' '35' ' ' '40. ' ' '45' ' ' , i o  
Time 

Figure 2.3.12 Example of a Time Plot Showing a Slight Downward Trend 

A time plot (Figure 2.3-12) is constructed by numbering the observations in order by time. The time 
ordering is plotted on the horizontal axis and the corresponding observation is plotted on the vertical axis. 
The points plotted on a time plot may be joined by lines; however, it is recommended that the plotted points 
not be connected to avoid creating a false sense of continuity. The scaling of the vertical axis of a time plot is 
of some importance. A wider scale tends to emphasize large-scale trends, whereas a smaller scale tends to 
emphasize small-scale trends. Using the ozone example above, a wide scale would emphasize the seasonal 
component of the data, whereas a smaller scale would tend to emphasize the daily fluctuations. Directions for 
constructing a time plot are contained in Box 2.3-15 along with an example. 

Box 2.3-15: Directions for Generating a Time Plot and an Example 

LetX,, X2, ..., X, represent n data points listed in order by time, Le., the subscript represents the ordered time 
interval. A plot of the pairs (i. a is a time plot of this data. 

Example: Consider the following 50 daily observations (listed in order by day): 10.05, 11.22, 15.9, 11.15, 10.53, 
13.33, 11.81, 14.78, 10.93, 10.31,7.95, 10.11, 10.27, 14.25,8.6,9.18, 12.2,9.52,7.59, 10.33, 12.13, 11.31, 
10.13, 7.11, 6.72,8.97, 10.11, 7.72, 9.57,6.23, 7.25,8.89, 9.14, 12.34, 9.99, 11.26, 557,955,  8.91,7.11, 6.04, 
8.67, 5.62, 5.99, 5.78, 8.66, 5.8,6.9, 7.7, 8.87. By labeling day 1 as 1, day 2 as 2, and so on, a time plot is 
constructed by plotting the pairs (i, 8 where i represents the number of the day and wepresents the concentration 
level. A time plot of this data is shown in Figure 2.3-12. 
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2.3.8.2 Plot of the Autocorrelation Function (Correlogram) 

Serial correlation is a measure of the extent to which successive observations are related. If 
successive observations are related, either the data must be transformed or this relationship must be 
accounted for in the analysis of the data. The correlogram is a plot that is used to display serial correlation 
when the data are collected at equally spaced time intervals. The autocorrelation function is a summary ofthe 

serial correlations of data. The f autocorrelation coefficient o> is the correlation between points that are 1 
time unit (4) apart; the Td autocorrelation coefficient diJ is the correlation between points that are 2 time 
units (b) apart; etc. A correlogram (Figure 2.3- 13) is a plot of the sample autocorrelation coefficients in 

which the values of k versus the values oflare displayed. Directions for constructing a correlogram are 
contained in Box 2.3- 16; example calculations are contained in Box 2.3-1 7. For large sample sizes, a 
correlogram is tedious to construct by hand; therefore, software like DataQUEST (QA/G-9Dj'should be used. 

The correlogram is used for modeling 
time series data and may be used to determine if 
serial correlation is large enough to create 

problems in the analysis of temporal data using 
other methodologies besides formal time series 
methodologies. A quick method for determining 
if serial correlation is large is to place horizontal 
lines at *2/Jn on the correlogram (shown as 
dashed lines on Figure 2.3-1 3). Autocorrelation 
coefficients that exceed this value require further 
investigation. 

In application, the correlogram is only 
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useful for data at equally spaced intervals. To 
relax this restriction, a variogram may be used 
instead. The variogram displays the same 
information as a correlogram except that the data may be based on unequally spaced time intervals. For more 
information on the construction and uses of the variogram, consult a statistician. 

Figure 2-3-13. Example of a Correlogram 

Box 2.3-16: Directions for Constructing a Correlogram 

Let X,, X,, ..., X, represent the data points ordered by time for equally spaced time points, i.e.,+vas collected at 
time 1, X ,  was collected at time 2, and so on. To construct a correlogram, first compute the sample autocorrelatio 
coefficients. So for k = 0, 1, ..., compute [where 

Once the r, have been computed, a correlogram is the graph (k,& for k = 0, 1, . . . , and so on. As a 
approximation, compute up to approximately k =. 1116. Also, note thabF 1. Finally, place horizontal lines at f2hi. 
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Box 2.3-17: Example Calculations for Generating a Correlogram 

A correlogram will be constructed using the following four hourly data points: hour 1 : 4.5, hour 2: 3.5. hour 3: 2.5, 
and hour 4: 1.5. Only four data points are used so that all computations may be shown. Therefore, the idea’that 
no more than n/6 autocorrelation coefficients should be computed will be broken for illustrative purposes. The firs1 
step to constructing a correlogram is to compute the sample mean (box 2-2) which is 3 for the 4 points. Then, 

4 

- (4.5-3)2+(3.5-3)2+(2.5-3)2+(l.5-3)2 = 
4 c b1-3’ 

- t -  1 

I- 1 4 

(2.5 -3)(4.5 -3) + (1.5 -3)(3.5 -3) - - 1.5 
- - = -0.375 - - 

4 4 

A 

4 4 4 4 

g 3  -0.5625 = -0.45. - 375 g2 = - = -0.3 ,and r3 = - = gi 0.3125 
g o  1.25 go 1.25 g o  1.25 

So rl  = - = - = 0.25 , r2 = - 

Remember r, = 1. Thus, the correlogram of these data is a plot of (0, 1) (1,0.25), (2, -0.3) and (3, -0.45) with two 
horizontal lines at k2t21rq (*I). This graph is shown below. 

In this case, it appears that the observations are not serially correlated because all of the correlogram points are. 
within the bounds of i2t21rq (*I .O). In Figure 2.3-1 3, if k represents months, then the correlogram shows a yearly 
correlation between data points since the points at k=12 and k=24 are out of the bounds of &T. This correlation 
will need to be accounted for when the data are analyzed. 
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Box 2.3-1 7: Example Calculations for Generating a Correlogram 
(Continued) 
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2.3.8.3 Multiple Observations Per Time Period 

Sometimes in environmental data collection, multiple observations are taken for each time period. 
For example, the data collection design may specify collecting and analyzing 5 samples from a drinking well 
every Wednesday for three months. If this is the case, the time plot described in section 2.3.8.1. may be used 
to display the data, display the mean weekly level, display a confidence interval for each mean, or display a 
confidence interval for each mean with the individual data values. A time plot of all the data will allow the 
analyst to determine if the variability for the different collection periods varies. A time plot of the means will 
allow the analyst to determine if the means may possibly be changing between the collection periods. In 
addition, each collection period may be treated as a distinct variable and the methods described in section 
2.3.7 may be applied. 
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2.3.9 Plots for Spatial Data 

. .  The graphical representations of the preceding sections may be useful for exploring spatial data. 
However, an analyst examining spatial data may be interested in the location of extreme values, overall 
spatial trends, and the degree of continuity among neighboring locations. Graphical representations for 
spatial data include postings, symbol plots, correlograms, h-scatter plots, and contour plots. 

The graphical representations presented in this section are recommended for all spatial data 
regardless of whether or not geostatistical methods will be used to analyze the data. The graphical 
representations described below will help identify spatial patterns that need to be accounted for in the analysis 
of the data. If the analyst uses geostatistical methods such as kriging to analyze the data, the graphical 
representations presented below will play an important role in geostatistical analysis. 

2.3.9.1 Posting Plots 

A posting plot (Figure 2.3-14) is a map of data locations along with corresponding data values. Data 
posting may reveal obvious errors in data location and identify data values that may be in error. The graph of 
the sampling locations gives the analyst an idea of how the data were collected (Le.., the sampling design), 
areas that may have been inaccessible, and areas of special interest to the decision maker which may have 
been heavily sampled. It is often useful to mark the highest and lowest values of the data to see if there are 
any obvious trends. If all of the highest concentrations fall in one region of the plot, the analyst may consider 
some method such as post-stratifying the data (stratification after the data are collected and analyzed) to 
account for this fact in the analysis. Directions for generating a posting of the data (a posting plot) are 

contained in Box 2.3-18. 

I 

\ '  
Figure 2.3-14 Example of a Posting Plot 

2.3.9.2 Symbol Plots 

For large amounts of data, a posting plot may not be feasible and a symbol plot (Figure 2.3-15) may 
be used. A symbol plot is basically the same as a posting plot of the data, except that instead of posting 
individual data values, symbols are posted for ranges of the data values. For example, the symbol '0' could 
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represent all concentration levels less than 100 ppm, the symbol ' 1 '  could represent all concentration levels 
between 100 ppm and 200 ppm, etc. Directions for generating a symbol plot are contained in Box 2.3-18. 

Figure 2.3-15. Example of a Symbol Plot 

Box 2.3-18: Directions for Generating a Posting Plot and a Symbol Plot 
with an Example 

On a map of the site, plot the location of each sample. At each location, either indicate the value of the data 
point (a posting plot) or indicate by an appropriate symbol (a symbol plot) the data range within which the 
value of the data point falls for that location, using one unique symbol per data range. 

Example: The spatial data displayed in the table below contains both a location (Northing and Easting) and a 
concentration level ([c]). The data range from 4.0 to 35.5 so units of 5 were chosen to group the data: 

Range Svmbol Ranae Svmbol 
0.0- 4.9 0 20.0 - 24.9 4 
5.0- 9.9 1 25.0 - 29.9 5 
10.0 - 14.9 2 30.0 - 34.9 6 
15.0 - 19.9 3 35.0 - 39.9 7 

The data values with corresponding symbols then become: 

Northing Eastina 
25.0 0.0 
25.0 5.0 
25.0 10.0 
25.0 15.0 
20.0 0.0 
20.0 5.0 
20.0 10.0 
20.0 15.0 
15.0 0.0 
15.0 5.0 
15.0 10.0 

Icl Symbol 
4.0 0 

11.6 2 
14.9 2 
17.4 3 
17.7 3 
12.4 2 
28.6 5 
7.7 1 

15.2 3 
35.5 7 
14.7 2 

Northing Eastinn 
15.0 15.0 
15.0 0.0 
10.0 5.0 
10.0 10.0 
10.0 15.0 
5.0 0.0 
5.0 5.0 
5.0 10.0 
5 .O 15.0 
0.0 5.0 
0.0 15.0 

Tcl Svmbd 
16.5 3 
8.9 1 

14.7 2 
10.9 2 
12.4 2 
22.8 4 
19.1 3 
10.2 2 
5.2 1 
4.9 0 

17.2 3 

The posting plot of this data is displayed in Figure 2.3-14 anche symbol plot is displayed in Figure 2.3-15. 

EPA QAIG-9 2.3 - 24 QA96 



2.3.9.3 Other Spatial Graphical Representations 

The two plots described in sections 2.3.9.1 and 2.3.9.2 provide information on the location of 
extreme values and spatial trends. The graphs below provide another item of interest to the data analyst, 
continuity of the spatial data. The graphical representations are not described in detail because they are used 
more for preliminary geostatistical analysis. These graphical representations can be difficult to develop and 
interpret. For more information on these representations, consult a statistician. 

An h-scatterplot is a plot of all possible pairs of data whose locations are separated by a fixed 
distance in a fixed direction (indexed by h). For example, a h-scatter plot could be based on all the pairs 
whose locations are 1 meter apart in a southerly direction. A h-scatter plot is similar in appearance to a 
scatter plot (section 2.3.7.2). The shape of the spread of the data in a h-scatter plot indicates the degree of 
continuity among data values a certain distance apart in particular direction. If all the plotted values fall close 
to a fixed line, then the data values at locations separated by a fixed distance in a fixed location are very 
similar. As data values become less and less similar, the spread of the data around the fixed line increases 
outward. The data analyst may construct several h-scatter plots with different distances to evaluate the 
change in continuity in a fixed direction. 

A correlogram is a plot of the correlations of the h-scatter plots. Because the h-scatter plot only 
displays the correlation between the pairs of data whose locations are separated by a fixed distance in a fixed 
direction, it is useful to have a graphical representation of how these correlations change for different 
separation distances in a fixed direction. The correlogram is such a plot which allows the analyst to evaluate 
the change in continuity in a fixed direction as a function of the distance between two points. A spatial 
correlogram is similar in appearance to a temporal correlogram (section 2.3.8.2). The correlogram spans 
opposite directions so that the correlogram with a fixed distance of due north is identical to the correlogram 
with a fixed distance of due south. 

Contour plots are used to reveal overall spatial trends in the data by interpolating data values 
between sample locations. Most contour procedures depend on the density of the grid covering the sampling 
area (higher density grids usually provide more information than lower densities). A contour plot gives one 
of the best overall pictures of the important spatial features. However, contouring often requires that the, 
actual fluctuations in the data values are smoothed so that many spatial features of the data may not be 
visible. The contour map should be used with other graphical representations of the data and requires expert 
judgement to adequately interpret the findings. 
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CHAPTER 3 

STEP 3: SELECT THE STATISTICAL TEST 

Verify the Assumptions 5d\ 

THE DATA QUALITY ASSESSMENT PROCESS 

I 

I Review DQOs and Sampling Design I I 

Select the Statistical Test 

I Draw Conclusions From the Data I I \ 

\ 

SELECT THE STATISTICAL TEST 

Select an appropriate procedure for analyzing 
..data based on the preliminary data review. 

Activities 

- Select Statistical Hypothesis Test - Identify Assumptions Underlying Test 

lnnls 

Hypothesis tests for a single population - Hypothesis tests for comparing two populations 

Step 3: Select the Statistical Test 

0 Select the statistical hypothesis test based on the data user's objectives and the results of the 
preliminary data review. 

If the problem involves cornparing study results to a fixed threshold, such as a regulatory 
standard, consider the hypothesis tests in section 3.2. 

rn If the problem involves comparing two populations, such as comparing data from two differei 
locations or processes, then consider the hypothesis tests in section 3.3. 

List the key underlying assumptions of the statistical hypothesis test, such as distributional fc 
dispersion, independence, or others as applicable. 
Note any sensitive assumptions where relatively small deviations could jeopardize the validit! 
the test results. 

0 Identify the assumptions underlying the statistical test. 
rn 
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CHAPTER 3 
STEP 3: SELECT THE STATISTICAL TEST 

3.1 OVERVIEW AND ACTIVITIES 

This chapter provides information that the analyst can use in selecting an appropriate statistical 
hypothesis test that will be used to draw conclusions from the data. A brief review of hypothesis testing is 
contained in Chapter 1 , “Developing DQOs Retrospectively.” There are two important outputs from this 
step: (1) the test itself, and (2) the assumptions underlying the test that determine the validity of conclusions 
drawn from the test results. 

, 
This section describes the two primary activities in this step of the DQA Process. The remaining 

sections in this chapter contain statistical tests that may be useful for analyzing environmental data. In the 
one-sample tests discussed in section 3.2, data from a population are compared with an absolute criterion 
such as a regulatory threshold or action level. In the two-sample tests discussed in’section 3.3, data from a 
population are compared with data from another population (for example, an area expected to be 
contaminated might be compared with a background area). For each statistical test, this chapter presents its 
purpose, assumptions, limitations, robustness, and the sequence of steps required to apply the test. 

The directions for each hypothesis test given in this chapter are for simple random sampling and 
randomized systematic sampling designs, except where noted otherwise. If a more complex design is used 
(such as a stratified design or a composite random sampling design) then different formulas are needed, some 
’ of which are contained in this chapter. 

3.1.1 Select Statistical Hypothesis Test 

If a particular test has been specified either in the DQO Process, the Quality Assurance Project Plan, 
or by the particular program or study, the analyst should use the results of the preliminary data review to 
determine if this statistical test is legitimate for the data collected. If the test is not legitimate, the analyst 
should document why this particular statistical test should not be applied to the data and then select a 
different test, possibly after consultation with the decision maker. If a particular test has not been specified, 
the analyst should select a statistical test based on the data user’s objectives, preliminary data review, and 
likely viable assumptions. 

3.1.2 Identify Assumptions Underlying the Statistical Test 

All statistical tests make assumptions about the data. Parametric tests assume the data have some 
distributional form (e.g., the t-test assumes normal distribution), whereas nonparametric tests do not make 
this assumption (e.g., the Wilcoxon test only assumes the data are symmetric but not necessarily normal). 
However, both parametric and nonparametric tests may assume that the data are statistically independent or 
that there are no trends in the data. While examining the data, the analyst should always list the underlying 
assumptions of the statistical hypothesis test, such as distribution, dispersion, or others as applicable. 

. Another important feature of statistical tests is their sensitivities (nonrobustness) to departures from 
the assumptions. A statistical procedure is called robust if its performance is not seriously affected by 
moderate deviations from its underlying assumptions. The analyst should note any sensitive assumptions 
where relatively small deviations could jeopardize the validity of the test results. 
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3.2 TESTS OF HYPOTHESES ABOUT A SINGLE POPULATION 

A one-sample test involves the comparison of a population parameter (e.g., a mean, percentile, or 
variance) to a threshold value. Both the threshold value and the population parameter were specified during 
Step 1 : Review DQOs and Sampling Design. In a one-sample test, the threshold value is a fixed number that 
does not vary. If the threshold value was estimated (and therefore contains variability), a one-sample test is 
not appropriate, An example of a one-sample test would be to determine if 95% of all companies emitting 
sulfur dioxide into the air are below a fixed discharge level. For this example, the population parameter is a 
percentage (proportion) and the threshold value is 95% (.95). Another example is a common Superfund 
problem that involves comparing the mean contaminant concentration to a risk-based standard. In this case, 
the risk-based standard (which is fixed) is the threshold value and the statistical parameter is the true mean 
contaminant concentration level of the site. However, comparing the mean concentration in an area to the 
mean concentration of a reference area (background) would not be a one-sample test because the mean 
concentration in the reference area would need to be estimated. 

The statistical tests discussed in this section may be used to determine if 8 < 8, or 8 > e,, where 8 
represents either the population mean, median, a percentile, or a proportion and 8, represents the threshold 
value. Section 3.2.1 discusses tests concerning the population mean, section 3.2.2 discusses tests concerning 
a proportion or percentile, and section 3.2.2 discusses tests for a median. 

3.2.1 Tests for a Mean 

A population mean is a measure of the center of the population distribution. It is one of the most 
commonly used population parameters in statistical hypothesis testing because its distribution is well known 
for large sample sizes. The hypotheses considered in this section are: 

Case 1: H,: p 5 C vs. HA: p > C; and 

Case 2: H,: p L C vs. HA: p < C  

where C represents a given threshold such as a regmtory level, and p denotes the (true),mean contaminant 
level for the population. For example, C may represent the arsenic concentration level of concern. Then if 
the mean of the population exceeds Cy the data user may wish to take action. 

The information required for this test (defined in Step 1) includes the null and alternative hypotheses 
(either Case 1 or Case 2); the gray region, i.e., a value p I > C for Case 1 or a value p , < C for Case 2 
representing the bound of the gray region; the false positive error rate 01 at C; the false negative error rate p at 
pI; and any additional limits on decision errors. It may be helpful to label any additional false positive error 
limits as a2 at C,, 0 1 ~  at C,, etc., and to label any additional false negative error limits as p, at p2, p3 at p3, etc. 
For example, consider the following decision: determine whether the mean contaminant level at a waste site 
is greater than 10 ppm. The null hypothesis is H ,: p 2 10 pprn and the alternative hypothesis is H A: p < 10 
ppm. A gray region has been set from 10 to 8 ppm, a false positive error rate of 5% has been set at 10 ppm, 
and a false negative error rate of 10% has been set at 8 ppm. Thus, C = 10 ppm, p , = 8 ppm, a = 0.05, and 
p = 0.1. If an additional false negative error rate was set, for example, an error rate of 1% at 4 ppm, then 
p, = .01 and p, = 4 ppm. 
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3.2.1.1 The One-Sample t-Test 

PURPOSE 

Given a random sample of size n (or a composite sample of size n, each composite consisting of k 
aliquots), the one-sample t-test can be used to test hypotheses involving the mean (p) of the population from 
which the sample was selected. 

ASSUMPTIONS AND THEIR VERIFICATION 

The primary assumptions required for validity of the one-sample t-test are that of a rando~m sample 
(independence of the data values) and that the sample mean 
Because the sample mean and standard deviation are very sensitive to outliers, the t-test should be preceded 
by a test for outliers (see section 4.4). 

is approximately normally distribu;ed. 

Approximate normality of the sample mean follows from approximate normality of the data values. 
In addition, the Central Limit Theorem states that the sample mean of a random sample from a population 
with an unknown distribution will be approximately normally distributed provided the sample size is large. 
This means that although the population distribution from which the data are drawn can be distinctly different 
from the normal distribution, the distribution of the sample mean can still be approximately normal when the 
sample size is relatively large. Although preliminary tests for normality of the data can and should be done 
for small sample sizes, the conclusion that the sample does not follow a normal distribution does not 
automatically invalidate the t-test, which is robust to moderate violations of the assumption of normality for 
large sample sizes. 

LIMITATIONS AND ROBUSTNESS 

The t-test is not robust to outliers because the sample mean and standard deviation are influenced 
greatly by outliers. The Wilcoxon signed rank test (see section 3.2.1.2) is more robust, but is slightly less 
powerful. This means that the Wilcoxon signed rank test is slightly less likely to reject the null hypothesis 
when it is false than the t-test. 

The t-test has difficulty dealing with less-than values, e.g., values below the detection limit, 
compared with tests based on ranks or proportions. Tests based on a proportion above a given threshold 
(section 3.2.2) are more valid in such a case, if the threshold is above the detection limit. It is also possible to 
substitute values for below detection-level data (e.g., % the detection level) or to adjust the statistical 
quantities to account for nondetects (e.g., Cohen's Method for normally or lognormally distributed data). See 
Chapter 4 for more information on dealing with data that are below the detection level. 

SEQUENCE OF STEPS 

Directions for a onersample t-test for a simple, systematic, and composite random samples are given 
in Box 3.2-1 and an example is given in Box 3.2-2. Directions for a one-sample t-test for a stratified random 
sample are given in Box 3.2-3 and an example is given in Box 3.2-4. 

~ EPA QAIG-9 3.2 - 2 QA96 



Box 3.2-1 : Directions for a OneSample t-Test 
for Simple and Systematic Random Samples 

with or without Compositing 

Let X,, X,, . . . , X,, represent the n data points. These could be either n individual samples or n composite 
samples consisting of k aliquots each. These are the steps for a one-sample t-test for Case 1 4Hp I C); 
modifications for Case 2 (I-& p z C) are given in braces { }. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6:  

Calculate the sample mean>((section 2.2.2) and the standard deviation s (section 2.2.3). 

Use Table A-I of Appendix A to find the critical value,& such that 100(la)% of the t distribution 
with n - 1 degrees of freedom is below h. For example, ifa = 0.05 and n = 16, then n- I  = 15 
and tl, = 1.753. 

Calculate the sample value t = (X-c) / (s/J;;> . 
Compare t with 4,. 

1) If t > tl, {t -tl.J, the null hypothesis may be rejected. Go to Step 6. 

2) If t > tl, {t c -tl.J, there is not enough evidence to reject the null hypothesis and the false 
negative error rate should be verified. Go to Step 5. 

As the null hypothesis (d) was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates. To calculate the 
power, assume that the true values for the mean and standard deviation are those obtained in the 
sample and use a software package like the Decision Error Feasibility Trial (DEFT) software (EPA 
G4D, 1994) or the Data Quality Evaluation Statistical Toolbox (DataQUEST) software (QNG-9D, 
1996) to generate the power cuwe of the test. 

If only one false negative error rate @) has been specified (at H), it is possible to calculate the 
sample size which achieves the DQOs, assuming the true mean and standard deviation are equal 
to the values estimated from the sample, instead of calculating the power of the test. To do this, 

calculate m = 

normal distribution (Table A-1 of Appendix A). Round m up to the next integer. If m n, the false 
negative error rate has been satisfied. If m > n, the false negative error rate has not been 
satisfied. 

The results of the test may be: 

- 

s 2 (Z,-a+Z,-p)2 

(P, -a2 + (0 .5 )z ; - ,  where 5, is the p” percentile of the standard 

1) the null hypothesis was rejected and it seems that the true mean is less than C {greater 
than C}; 

2) the null hypothesis was not rejected and the false negative error rate was satisfied and it 
seems that the true mean is greater than C (less than C}; or 

3) the null hypothesis was not rejected and the false negative error rate was not satisfied 
and it seems that the true mean is greater than C {less than C} but conclusions are 
uncertain since the sample size was too small. 

Report the results of the test, the sample size, sample mean, standard deviation, t an44. 

Note: The calculations for the t-test are the same for both simple random or composite random sampling. 
The use of compositing will usually result in a smaller value of “s” than simple random sampling. 

EPA QA/G-9 3.2-  3 QA96 



Box 3.2-2: An Example of a OneSample t-Test 
for a Simple Random or Composite Sample 

Consider the following 9 random (or composite samples each of k aliquots) data points: 82.39 pprn, 103.46 
ppm, 104.93 ppm, 105.52 ppm, 98.37 ppm, 113.23 ppm, 86.62 ppm, 91.72 ppm, and 108.21 ppm. This 
data will be used to test the hypothesis: tt ~.r s 95 ppm vs. HA: p > 95 ppm. The decision maker has 
specified a 5% false positive decision error limit@ at 95 ppm (C), and a 20% false negative decision error 
limit (p) at 105 ppm (p,). 

STEP 1: In Boxes 2.3-3 and 2.3-5 of Chapter 2, it was found that 

x = 99.38 ppm and s = 10.41 ppni. 

STEP 2: Using Table A-I  of Appendix A, the critical value of the t distribution with 8 degrees of freedom is 
f.9s = 1.86. 

X - C - 99.38 - 95 = 
STEP31 t = - - 

s t f i  10.41/fi 

STEP 4: Because 1.26 ? 1.86, there is not enough evidence to reject the null hypothesis and the false 
negative error rate should be verified. 

STEP 5: Because there is only one false negative error rate, it is possible to use the sample size formula to 
determine if the error rate has been satisfied. Therefore, 

- - 10'412(1'645 + 0'842)2 + (0.5)(1.645)2 = 8.049, Le., 9 
(95 - 105)2 

Notice that it is customary to round upwards when computing a sample size. Since m=n, the 
false negative error rate has been satisfied. 

The results of the hypothesis test were that the null hypothesis was not rejected but the false 
negative error rate was satisfied. Therefore, it seems that the true mean is less than 95 ppm. 

STEP 6: 

EPA QNG-9 3.2 - 4 QA96 



Box 3.2-3: Directions for a OneSample t-Test 
for a Stratified Random Sample 

Let h=l, 2, 3, . . . , L represent the L strata and prepresent the sample size of stratum h. These steps are for 
a one-sample t-test for Case 1 (I-& p i C); modifications for Case 2 (d: p 2 C) are given in braces { }. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5:  

STEP 6: 

STEP 7: 

STEP 8: 

Calculate the stratum weights o/K) by calculating the proportion of the volume in 

stratum h, Wh = - vh where V, is the surface area of stratum h multiplied by the depth of 

sampling in stratum h. 

- 5 xhi 
i -  I For each stratum, calculate the sampie stratum mean X, = - and the sample stratum 

nh 

, 

“h (Xhi - x,,>’ 
standard errors; = 

j - 1  nh - 1 
2 

2 ‘h  
L 

2 - L -  
Calculate overall mean x,, = WA,, and variance sST = wh-. 

h- I h - l  nh 

(S:T)2 
Calculate the degrees of freedom (dof): dof = 9 2 w / x  

h-1 n h ( n h - 1 )  
Use Table A-I of Appendix A to find the critical value,& so that 100(1a)% of the t distribution 
with the above degrees of freedom (rounded to the next highest integer) is be1ovy.J. 

Calculate the sample value:t = 

Compare t to 
{t 4 -tlJ, there is not enough evidence to reject the null hypothesis and the false negative error 
rate should be verified. Go to Step 7. 

x, - c 
JSST 

If t > tl., {t < -&A, the null hypothesis may be rejected. Go to Step 8. If 8 tl., 

If the null hypothesis was not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false positive and false negative error rates (see Step 5, Box 3.2-1). 

The results of the test may be: 

1) the null hypothesis was rejected so it seems that the true mean is less than C {greater 
than C}; 

2) the null hypothesis was not rejected and the false negative error rate was satisfied and it 
seems that the true mean is greater than C (less than C}; or 

3) the null hypothesis was not rejected and the false negative error rate was not satisfied 
and it seems that the true mean is greater than C {less than C} but conclusions are 
uncertain since the sample size was too small. 

Report the results of the test, as well as the sample size, sample mean, and sample standard 
deviation for each stratum, the estimated t, the dof, and&. 
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Box 3.24: An Example of a OneSample t-Test 
for a Stratified Random Sample 

Consider a stratified sample consisting of two strata where stratum 1 comprises 10% of the total site surface 
area and stratum 2 comprises the other 90%, and 40 samples were collected from stratum 1 ;and 60 samples 
were collected from stratum 2. For stratum 1, the sample mean is 23 ppm and the sample standard deviation 
is 18.2 ppm. For stratum 2, the sample mean is 35 ppm, and the sample standard deviation is 20.5 ppm. 
This information will be used to test the null hypothesis that theverall site mean is greater than or equal to 40 
ppm, i.e., H,,: p 2 40 ppm (Case 2). The decision maker has specified a 1% false positive decision IimLi at 
40 ppm and a 20% false negative decision error limit@ at 35 ppm (u). 
STEP 1: 

STEP 2: 

W, = 10/100 = 0.10, Vy= 90/100= 0.9. 

From above,?, = 23 pprn,?, = 35 ppm, s, = 18.2, and s, = 20.5. This information was 
developed using the equations in step 2 of Box 3.2-3. 

The estimated overall mean concentration is: STEP 3: 

L 

TsT = W S h  = WITl + WJ2 = (.1)(23) + (.9)(35) = 33.8 ppm. 
h-l 

and the estimated overall variance is: 

STEP 4: The approximate degrees of freedom (do9 is: 

(ss2T)2 do = 60.8, i.e., 61 - - (5.76)2 
(.l)4(18.2)4 + (.9)4(20.5)4 

(40)239 (60)2 59 

J =  

Note how the degrees of freedom has been rounded up to a whole number. Using Table A-I of 
Appendix A, the critical value of the t distribution with 61 dof is approximately 2.39. 

- 

x~~ - - - 33.8 - 40 = -2.58 STEP 5: Calculate the sample value t = 
JSST p 

STEP 6: 

STEP 7: 

Because -2.58 < -2.39 the null hypothesis may be rejected. 

Because the null hypothesis was rejected, it is concluded that the mean is probably less than 40 
ppm. In this example there is no need to calculate the false negative rate as the null hypothesis 
was rejected and so the chance of making a false negative error is zero by definition. 
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3.2.1.2 The Wilcoxon Signed Rank (One-Sample) Test for the Mean 

PURPOSE 

Given a random sample of size n (or composite sample size n, each composite consisting of k 
aliquots), the Wilcoxon signed rank test can be used to test hypotheses regarding the population mean or 
median of the population from which the sample was selected. 

ASSUMPTIONS AND THEIR VERIFICATION 

The Wilcoxon signed rank test assumes that the data constitute a random sample from a symmetric 
continuous population. (Symmetric means that the underlying population frequency curve is symmetric about 
its meadmedian.) Symmetry is a less stringent assumption than normality since all normal distributions are 
symmetric, but some symmetric distributions are not normal. The mean and median are equal for a 
symmetric distribution, so the null hypothesis can be stated in terms of either parameter. Tests for symmetry 
can be devised which are based on the chi-squared distribution, or a test for normality may be used. If the 
data are not symmetric, it may be possible to transform the data so that this assumption is satisfied. See 
Chapter 4 for more information on transformations and tests for symmetry. 

LIMITATIONS AND ROBUSTNESS 

Although symmetry is a weaker assumption than normality, it is nonetheless a strong assumption. If 
the data are not approximately symmetric, this test should not be used. For large sample sizes (n > SO), the 
t-test is more robust to violations of its assumptions than the Wilcoxon signed rank test. For small sample 
sizes, if the data are not approximately symmetric and are not normally distributed, this guidance 
recommends consulting a statistician before selecting a statistical test or changing the population parameter 
to the median and applying a different statistical test (section 3.2.3). 

The Wilcoxon signed rank test may produce misleading results if many data values are the same. 
When values are the same, their relative ranks are the same, and this has the effect of diluting the statistical 
power of the Wilcoxon test. Box 3.2-5 demonstrates the correct method used to break tied ranks. If possible, 
results should be recorded with sufficient accuracy so that a large number of equal values do not occur. 
Estimated concentrations should be reported for data below the detection 1imif.even if these estimates are 
negative, as their relative magnitude to the rest of the data is of importance. 

SEQUENCE OF STEPS 

Directions for the Wilcoxon signed rank test for a simple random sample and a systematic simple 
random sample are given in Box 3.2-5 and an example is given in Box 3.2-6 for samples sizes smaller than 
20. For sample sizes greater than 20, the large sample approximation to the Wilcoxon Signed Rank Test 
should be used. Directions for this test are given in Box 3.2-7. 
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Box 3.23: Directions for the Wilcoxon Signed Rank Test 
for Simple and Systematic Random Samples 

Let X,, X,, . . . , X,, represent the n data points. The following describes the steps for applying the Wlcoxon 
signed rank test for both Case 1 (I$ p 5 C) and Case 2 (h: p 1 C) for a sample size (n) less than 20. If the 
sample size is greater than or equal to 20, use Box 3.2-7. 

STEP 1: ' If possible, assign values to any measurements below the detection limit. If this is not possible, 
assign the value "Detection Limit divided by 2" to each value. Then subtract C from each of the n 
observations &to obtain the deviations d= X, - C. If any of the deviations are zero delete them 
and correspondingly reduce the sample size n. 

Assign ranks from 1 to n based on ordering the absolute deviations IMi.e., magnitude of 
differences ignoring the sign) from smallest to largest. The rank 1 is assigned to the smallest 
value, the rank 2 to the second smallest value, and so forth. If there are ties, assign the average 
of the ranks which would otherwise have been assigned to the tied observations. 

Calculate the signed rank for each observation. This signed rank is equal to the rank if the 
deviation is positive, or equal to the negative rank if the deviation ,ds negative. 

For Case 1, calculate the sum R of the ranks with a positive sign. 

For Case 2,' calculate the sum R of the ranks with a negative sign and take the absolute value of 
this sum (Le., ignore the negative sign). 

Use Table A-6 of Appendix A to find the critical value 

If R 5 w,, the null hypothesis may be rejected. Go to Step 7. 

If R c w,, there is not enough evidence to reject the null hypothesis, and the false negative error 
rate will need to be verified. Go to Step 6. 

If the null hypothesis (y) was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates using a software 
package like the DEFT sohare  (EPA G4D, 1994) or the DataQUEST software (EPA G-4D, 
1996). Calculate, 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

where q, is the p" percentile of the standard normal distribution (Table A-I of Appendix A). Then 
multiply m by 1 . I6 to account for loss in efficiency and if this is number is greater than or equal to 
n, the false negative error rate has been satisfied. 

STEP 7 :  The results of the test may be: 

1) the null hypothesis was rejected, and for Case 1, it seems the true mean is greater than C or 
for Case 2, it seems the true mean is less than C; 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and for Case 1, 
it seems the true mean is less than C or for Case 2, it seems the true mean is greater than C; or 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and for 
Case 1, it seems the true mean is less than C or for Case 2, it seems the true mean is greater 
than C but the conclusions are uncertain because the sample size was too small. 
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Box 3.2-6: An Example of the Wilcoxon Signed Rank Test 

for a Simple Random Sample 

Consider the following 10 data points: 974 ppb, 1044 ppb, 1093 ppb, 897 ppb, 879 ppb, 1161 ppb, 839 ppb, 
824 ppb, 796 ppb, and one observation below the detection limit of 750 ppb. This data will be used to test 
the hypothesis: tj,: p 2 1000 ppb vs. 4: p < 1000 ppb (Case 2). The decision maker has specified a 10% 
false positive decision error limit4) at 1000 ppb (C), and a 20% false negative decision error l imia at 
900 PPb (PI). 

STEP 1: Assign the value 375 ppb (750 divided by 2) to the data point below the detection limit. Subtract 
C (1000) from each of the n observations yto obtain the deviations d= Xi - 1000. This is shown 
in row 2 of the table below. 

xi 974 io44 1093 897 879 1161 a39 . 824 796 375 
di -26 +44 +93 -103 -121 +I61 -161 -176 -204 -625 

ldil 26 44 93 103 121 161 161 176 204 625 
rank 1 2 3 4 5 6.5 6.5 8 9 10 

s-rank -1 2 3 -4 -5 6.5 -6.5 -8 -9 -1 0 

STEP 2:. Assign ranks from 1 to n based on ordering the.absolute deviations IMmagnitude ignoring any 
negative sign) from smallest to largest. The absolute deviations are listed in row 3 of the table 
above. Note that the data have been sorted (rearranged) for clarity so that the absolute 
deviations are ordered from smallest to largest. 

The rank 1 is assigned to the smallest value, the rank 2 to the second smallest value, and so 
forth. Observations 6 and 7 are ties, therefore, the average (6+7)/2 = 6.5 will be assigned to the 
two observations. The ranks are shown in row 4. 

Calculate the signed rank for each observation. This signed rank is equal to the rank if the 
deviation is positive, or equal to the negative rank if the deviationids negative. The signed 
rank is shown in row 5. 

Because of the form of the null hypothesis (kjl p 2 1000 ppb), R is the sum of the ranks with 
neqative signs. Since, -1 + -4 + -5 + -6.5 + -8 + -9 + -10 = -43.5, R = 43.5. 

Because there are only 10 data points, Table A-6 of Appendix A is used to find the critical value 
w, where a = 0.10. For this example, I,,,, = 15. Therefore, since 43.5 > 15, the null hypothesis 
may be rejected. 

The null hypothesis was rejected with a 10% significance level using the Wilcoxon signed rank 
test (w=15). Therefore, it would seem that the true mean is below 1000 ppb. 

STEP 3: 

STEP 4: 

STEP 5: 

. . STEP 6: 
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Box 3.2-7: Directions for the Large Sample Approximation 
to the Wilcoxon Signed Rank Test 

for Simple and Systematic Random Samples 

Let X,, X,, . . . , X, represent the n data points where n is greater than or equal to 20. The following describes 
the steps for applying the large sample approximation for the Wilcoxon signed rank test for both Case 1 
(H,,: c~ s C) and Case 2 (I$: c~ 2 C). 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

STEP 7: 

If possible, assign values to any measurements below the detection limit. If this is not possible, 
assign the value “Detection Limit divided by 2” to each value. Then subtract C from each of the n 
observations 3 to obtain the deviations qi= Xi - C. If any of the deviations are zero delete them 
and correspondingly reduce the sample size n. 

Assign ranks from 1 to n based on ordering the absolute deviations IMi.e., magnitude of 
differences ignoring the sign) from smallest to largest. The rank 1 is assigned to the smallest 
value, the rank 2 to the second smallest value, and so forth. If there are ties, assign the average 
of the ranks which would othenvise have been assignedb the tied observations 

Calculate the signed rank for each observation. This signed rank is equal to the rank if the 
deviation 4 is positive, or equal to the negative rank if the deviation,& negative. 

For Case 1, calculate the sum R of the ranks with a positive sign. For Case 2, calculate the sum 
R of the ranks with a negative sign and take the absolute value of this sum (Le., ignore the 

n(n + 1 )  R -  
4 

negative sign). Then calculate: z = 
Jn(n + 1)(2n + 1)/24 

Use Table A-I of Appendix A to find the critical value& such that 100(la)% of the normal 
distribution is below 4,. For example, ifa = 0.05, then z,, = 1.645. If z > z,,, the null 
hypothesis may be rejected. If z+ z,,, there is not enough evidence to reject the null hypothesis. 
Therefore, the false negative error rate will need to be verified. 

If the null hypothesis (y) was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates using a software 
package like the DEFT software (EPA G4D, 1994) or the DataQUEST software (EPA G4D, 
1996). Calculate, 

where z,, is the p” percentile of the standard normal distribution (Table A-I of Appendix A). Then 
multiply m by 1 . I6 to account for loss in efficiency and if this value is greater than or equal to n, 
the false negative error rate has been satisfied. 

The results of the test may be: 

1) the null hypothesis was rejected, and for Case 1, it seems the true mean is greater than C or 
for Case 2, it seems the true mean is less than C; 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and for Case 
1, it seems the true mean is less than C or for Case 2, it seems the true mean is greater than C; 
or 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and for 
Case I, it seems the true mean is less than C or for Case 2, it seems the true mean is greater 
than C but the conclusions are uncertain because the sample size was too small. 
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3.2.2 Tests for a Proportion or Percentile 

This section considers hypotheses concerning population proportions and percentiles. A population 
proportion is the ratio of the number of elements of a population that has some specific characteristic to the 
total number of elements. A population percentile represents the percentage of elements of a population 
having values less than some threshold C. Thus, if x is the 95 lh percentile of a population, 95% of the 
elements of the population have values less than C and 5% of the population have values greater than C. 

This section of the guidance covers the following hypothesis: Case 1 : H ,: P < Po vs. HA: P > Po 
and Case 2: H,: P 2 Po vs. HA: P < Po where P is a proportion of the population, and P , represents a given 
proportion (0 5 Po 5 1). Equivalent hypotheses written in terms of percentiles are H ,: the 1O0Pth.percentile is 
C or larger for Case 1, and H ,: the 100Pth percentile is C or smaller for Case 2. For example, consider the 
decision to determine whether the 95 lh percentile of a container of waste is less than 1 mg/L cadmium. The 
null hypothesis in this case is H o: the 951h percentile of cadmium is less than 1 mg/L. Now, instead of 
considering the population to consist of differing levels of cadmium, consider the population to consist of a 
binary variable that is '1' if the cadmium level is above 1 mg/L or is '0' if the level is below 1 m a .  In this 
case, the hypothesis may be changed to a test for a proportion so that the null hypothesis becomes 
H,: P < .95 where P represents the proportion of 1's (cadmium levels above 1 m a )  in the container of 
waste. Thus, any hypothesis about the proportion of the site below a threshold can be converted to an 
equivalent hypothesis about percentiles. Therefore, only hypotheses about the proportion of the site below a 
threshold will be discussed in this section. The information required for this test includes the null and 
alternative hypotheses, the gray region, the false positive error rate a at Po, the false negative error rate f3 at 
P,, and any additional limits on decision errors. It may be helpful to label any additional false positive error 
limits as a, at Pa*, a, at Pa3, etc., and any additional false negative error limits as p2 at P,,, p3 at P,,, etc. 

3.2.2.1 The One-Sample Proportion Test 

PURPOSE 

Given a random sample of size n, the one-sample proportion test may be used to test hypotheses 
regarding a population proportion or population percentile for a distribution from which the data were drawn. 
Note that for P=.5, this test is also called the Sign test. 

ASSUMPTIONS AND THEIR VERIFICATION 

The only assumption required for the one-sample proportion test is the assumption of a random 
sample. To verify this assumption, review the procedures and documentation used to select the sampling 
points and ascertain that proper randomization has been used. 

LIMITATIONS AND ROBUSTNESS 

Since the only assumption is that of a random sample, the procedures are valid for any underlying 
distributional shape. The procedures are also robust to outliers, as long as they do not represent data errors. 

SEQUENCE OF STEPS 

Directions for the one-sample test for proportions for a simple random sample and a systematic 
simple random sample are given in Box 3.2-8, an example is given in Box 3.2-9. 
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Box 3.2-8: Directions for the OneSample Test for Proportions 
for Simple and Systematic Random Samples 

This box describes the steps for applying the one-sample test for proportions for Case 1 4HP 5 Po); 
modifications for Case 2 (I-& P 2 Po) are given in braces { }. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

Given a random sample &, X,, . . . , X,, of measurements from the population, let p (small p) denote 
the proportion of X's that do not exceed C, Le., p is the number (k) of sample points that are less 
than or equal to C, divided by the sample size n. 

Compute np, and n(1-p). If both np and n(1-p) are greater than or equal to 5, use Steps 3 and 4. 
Otherwise, consult a statistician as analysis may be complex. 

p - Sln - Po p + SIn - Po 
Caldulate z = for Case 1 or z = for Case 2. 

J-- J- 

Use Table A-I of Appendix A to find the critical value& such that 100(la)% of the normal 
distribution is below qa. For example, ifa = 0.05 then z,, = 1.645. 

If z > qa {z < -+A, the null hypothesis may be rejected. Go to Step 6. 

If z > z,, {z c -z,J there is not enough evidence to reject the null hypothesis. Therefore, the false 
negative error rate will need to be verified. Go to Step 5. 

To calculate the power of the test, assume that the true values for the mean and standard deviation 
are those obtained in the sample and use a statistical software package like the DEFT software 
(EPA G4D, 1994) or the DataQUEST software (EPA G-9D, 1996) to generate the power curve of 
the test. 

If only one false negative error rate @) has been specified (at e), it is possible to calculate the 
sample size which achieves the DQOs. To do this, calculate 

If m 5 n, the false negative error rate has been satisfied. Otherwise, the false negative error rate ha: 
not been satisfied. 

The results of the test may be: 

1) the null hypothesis was rejected and it seems that the proportion is greater than {less than&? 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems tha 
proportion is less than {greater than} g or 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it would 
seem the proportion was less than {greater than} but the conclusions are uncertain because the 
sample size was too small. 
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Box 3.2-9: An Example of the OneSample Test for Proportions 
for a Simple Random Sample 

Consider 85 samples of which 11 samples have concentrations greater than the clean-up standard. This 
data will be used to test the null hypothesis P z .20 vs. HA: P < .20 (Case 2). The decision maker has 
specified a 5% false positive rate 6) for Po = .2, and a false negative rate 0) of 20% for Pl = 0.1 5. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

From the data, the observed proportion (p) is p = 11/85 = .I294 

np = (85)(.1294) = 11 and n(1-p) = (85)(1-.1294) = 74. Since both np and n(1-p) are greater 
than or equal to 5, Steps 3 and 4 will be used. 

Because I-(,: P z .20, Case 2 formulas will be used. 
\ 

Using Table A-I of Appendix A, it was found that 
-1.492 c -1.645), the null hypothesis is not rejected so Step 5 will need to be completed. 

= z.g5 = 1.645. Because zc -zla (Le., 

To determine whether the test was powerful enough, the sample size necessary to achieve the 
DQOs was calculated as follows: 

1.644-+ 1.044- = 422.18 

m = [  .15 - .2 I 
So 423 samples are required, many more than were actually taken. 

The null hypothesis was not rejected and the false negative error rate was not satisfied. 
Therefore, it would seem the proportion is greater than 0.2, but this conclusion is uncertain 
because the sample size is too small. 

. 

3.2.3 Tests for a Median 

A population median ( ji) is another measure of the center of the population distribution. This 
population parameter is less sensitive to extreme values and nondetects than the sample mean. Therefore, 
this parameter is sometimes used instead of the mean when the data contain a large number of nondetects or 
extreme values. The hypotheses considered in this section are: 

Case 1: H,: ji s C vs. HA: ji > C; and 

Case 2: H,: ji 2 C vs. HA: ji < C  

where C represents a given threshold such as a regulatory level. 

It is worth noting that the median is the 50 th percentile, so the methods described in section 3.2.2 may 
be used to test hypotheses concerning the median by letting P , = 0.50. In this case, the one-sample test for 
proportions is also called the Sign Test for a median. The Wilcoxon signed rank test (section 3.2.1.2) can 
also be applied to a median in the same manner as it is applied to a mean. In addition, this test is more 
powerhl than the Sign Test for symmetric distributions. Therefore, the Wilcoxon signed rank test is the 
preferred test for the median. 
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3.3 TESTS FOR COMPARING TWO POPULATIONS 

A two-sample test involves the comparison of two populations or a “before and after” comparison. 
In environmental applications, the two populations to be compared may be a potentially contaminated area 
with a background area or concentration levels from an upgradient and a downgradient well. The comparison 
of the two populations may be based on a statistical parameter that characterizes the relative location (e.g., a 
mean or median), or it may be based on a distribution-free comparison of the two population distributions. 
Tests that do not assume an underlying distributions (e.g., normal or lognormal) are called distribution-free or 
nonparametric tests. These tests are often more useful for comparing two populations than those that assume 
a specific distribution because they make less stringent assumptions. Section 3.3.1 covers tests for 
differences in the means of two populations. Section 3.3.2 covers tests for differences in the proportion or 
percentiles of two populations. Section 3.3.3 describes distribution-free comparisons of two populations. 
Section 3.3.4 describes tests for comparing two medians. 

Often, a two-sample test involves the comparison of the difference of two population parameters to a 
threshold value. For environmental applications, the threshold value is often zero, representing the case 
where the data are used to determine which of the two population parameters is greater than the other. For 
example, concentration levels from a Superfund site may be compared to a background site. Then, if the 
Superfund site levels exceed the background levels, the site requires further investigation. A two-sample test 
may also be used to compare readings from two instruments or two separate populations of people. 

If the exact same sampling locations are used for both populations, then the two samples are not 
independent. This case should be converted to a one-sample problem by applying the methods described in 
section 3.2 to the differences between the two populations at the same location. For example, one could 
compare contaminant levels from several wells after treatment to contaminant levels from the same wells 
before treatment. The methods described in section 3.2  would then be applied to the differences between the 
before and after treatment contaminant levels for each well. 

3.3.1 Comparing Two Means 

Let p, represent the mean of population 1 and p represent the mean of population 2. The 
hypotheses considered in this section are: 

Case 1: H,: pI - p2 s 6, vs. H A :  pI - pz > 6,; and 

Case 2: H,: p, - p2 2 6, VS. H A :  p, - pz < 6,. 

An example of a two-sample test for population means is comparing the mean contaminant level at a 
remediated Superfund site to a background site; in this case, 6, would be zero. Another example is a Record 
of Decision for a Superfund site which specifies that the remediation technique must reduce the mean 
contaminant level by 50 ppm each year. Here, each year would be considered a separate population and 
would be 50 ppm. 

6, 

The information required for these tests includes the null and alternative hypotheses (either Case 1 or 
Case 2); the gray region (i.e., a value 6, > 6, for Case 1 or a value 6, c 6, for Case 2 representing the bound 
of the gray region); the false positive error rate a at 6,; the false negative error rate p at 6,; and any additional 
limits on decision errors. It may be helpful to label additional false positive error limits as a, at tia2, a3 at ba3, 
etc., and to label additional false negative error limits as p2 at 6,,, p3 at 6,,, etc. 
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3.3.1.1 Student's Two-Sample t-Test (Equal Variances) 

PURPOSE 

Student's two-sample t-test can be used to compare two population means based on the independent 
random samples X I ,  X,, . . . , X, from the first population, and Y I ,  Y,, . . . , Y, from the second population. 
This test assumes the variabilities (as expressed by the variance) of the two populations are approximately 
equal. If the two variances are not equal (a test is described in section 4.5), use Satterthwaite's t test (section 
3.3.1.2). 

ASSUMPTIONS AND THEIR VERIFICATION 

The principal assumption required'for the two-sample t-test is that a random sample of size m (X ,, 
X,, . . . , X,) is drawn from population 1, and an independent random sample of size n (Y I ,  Y,, . . . , Y,) is 
drawn from population 2. Validity of the random sampling and independence assumptions should be 
confirmed by reviewing the procedures used to select the sampling points. 

The second assumption required for the two-sample t-tests are that the sample means X (sample 1) 
and Y (sample 2) are approximately normally distributed. If both m and n are large, one may make this 
assumption without further verification. For small sample sizes, approximate normality of the sample means 
can be checked by testing the normality of each of the two samples. 

LIMITATIONS AND ROBUSTNESS 

The two-sample t-test with equal variances is robust to violations of the assumptions of normality 
and equality of variances. However, if the investigator has tested and rejected normality or equality of 
variances, then nonparametric procedures may be applied. The t-test is not robust to outliers because sample 
means and standard deviations are sensitive to outliers. 

SEQUENCE OF STEPS 

Directions for the two-sample t-test for a simple random sample and a systematic simple random 
sample are given in Box 3.3-1 and an example in Box 3.3-2. 

3.3.1.2 Satterthwaite's Two-Sample t-Test (Unequal Variances) 

Satterthwaite's t-test should be used to compare two population means when the variances of the two 
populations are not equal. It requires the same assumptions as the two-sample t-test (section 3.3.1.1) except 
the assumption of equal variances. 

Directions for Satterthwaite's t-test for a simple random sample and a systematic simple random 
sample are given in Box 3.3-3 and an example in Box 3.3-4. 
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Box 3.3-1: Directions for the Student's TwoSample t-Test (Equal Variances) 
for Simple and Systematic Random Samples 

This describes the steps for applying the two-sample t-tests for differences between the population means 
when the two population variances are equal for Case 1 (H p1 - p2 I 6,). Modifications for Case 2 
(H,: p1 - p, 2 a,) are given in parentheses { }. 

STEP 1 : Calculate the sample mean5 and the sample variance sz for sample 1 and compute the sample 
mean 7 and the sample variance q2 for sample 2. 

Use section 4.5 to determine if the variances of the two populations are equal. If the variances of 
the two populations are not equal, use Satterthwaite's t test (section 3.3.1.2). Otherwise, 
compute the pooled standard deviation 

STEP 2: 

S E  = 
rn-1) + (n-I) 

x - Y - 8 ,  

S E J i Z K  
STEP 3: Calculate t = 

Use Table A-I of Appendix A to find the critical valuqf such that 100(la)% of the t-distribution 
with (m+n-2) degrees of freedom is below &,. 

If t > t,, {t c -tl.J, the null hypothesis may be rejected. Go to Step 5. 

If t 't tl, {t c -tl.J, there is not enough evidence to reject the null hypothesis. Therefore, the false 
negative error rate will need to be verified. Go to Step 4. 

To calculate the power of the test, assume that the true values for the mean and standard 
deviation are those obtained in the sample and use a statistical software package like the DEFT 
software (EPA G4D, 1994) or the DataQUEST software (EPA G-gD, 1996) to generate the 
power curve of the two-sample t-test. If only one false negative error r a t a  has been specified 
(at ti,), it is possible to calculate the sample size which achieves the DQOs, assuming the true 
mean and standard deviation are equal to the values estimated from the sample, instead of 
calculating the power of the test. Calculate 

STEP 4: 

If m' I m and n' I n, the false negative error rate has been satisfied. Otherwise, the false negative 
error rate has not been satisfied. 

STEP 5: The results of the test could be: 

1) the null hypothesis was rejected, and it seems p- p2 > 6, {pl - p2 < 6J; 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it 
seems p1 - p2 5 6, {pl - p, 2 6J, but this conclusion is uncertain because the sample size was 
too small. 

Pl - Pz 5 6 0  {Pl - 112 2 ad); or 
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Box 3.3-2: An Example of a Student's TwoSample t-Test (Equal Variances) 
for Simple and Systematic Random Samples 

At a hazardous waste site, area 1 (cleaned using an in-situ methodology) was compared with a similar (but 
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two sites 
should be approximately equal in average contaminant levels. If the methodology did not work, then area 1 
should have a higher average than the reference area. Seven random samples were taken from area 1, and 
eight were taken from area 2. Because the contaminant concentrations in the two areas are supposedly 
equal, the null hypothesis is I$ p, - pz i 0 (Case 1). The false positive error rate was set at 5% and the false 
negative error rate was set at 20% 0) if the difference between the areas is 2.5 ppb. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

Sample Mean Samp;lV'a;ce 
Area 1 7.8 ppm 
Area 2 6.6 ppm 2.2 p p d  

Methods described in section 4.5 were used to determine that the variances were essentially 
equal. Therefore, 

I 

Table A-I of Appendix A was used to find that the critical valuqj, with (7 + 8 - 2) = 13 degrees 
of freedom is 1.771. 

Because t 1 t,, (Le., 1.5798 + 1.771), there is not enough evidence to reject the null hypothesis. 
The false negative error rate will need to be verified. 

Assuming the true values for the mean and standard deviation are those obtained in the sample: 

m *  = n*  = 2(1'46762)(1.645 +0*842)2 + (0.25)1 .645' = 4.938, i.e., 5. 
. .  (2.5 -0)' 

Because m I m (7) and n' 5 n (8), the false negative error rate has been satisfied. 

The null hypothesis was not rejected and the false negative error rate was satisfied. Therefore, it 
seems there is no difference between the two areas and that the in-situ methodology worked as 
expected. 

-77 
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Box 3.33:  Directions for Satterthwaite's t-Test (Unequal Variances) 
for Simple and Systematic Random Samples 

This describes the steps for applying the two-sample t-test for differences between the population means for 
Case 1 (l-b: pl - p2 5 6,). Modifications for Case 2 (t-d: pl - p, 2 6,) are given in parentheses { }. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

Calculate the sample meanx and the sample variance t2 for sample 1 and compute the sample 
mean and the sample variance q2 for sample 2. 

Using section 4.5, test whether the variances of the two populations are equal. If the variances 

2 = J  - + -  sx SY 
of the two populations are not equal, compute: sNE 

If the variances of the two populations appear approximately equal, use Student's two-sample t- 
test (section 3.3.1.1,.Box 3.3-1). 

r n n  

- -  
x - Y - 6 ,  

Calculate t = 
s~~ 

Use Table A-I of Appendix A to find the critical value& such that 100(la)% of the t-distribution 
with f degrees of freedom is below L,, where 

m n  
4 

SY sx + 
rn2(rn-1)  n2(n-1)  

(Round f- to the nearest integer.) 

If t > t,, {t < -tlJ the null hypothesis may be reject d. Go to Si P 5. 

If t > t,, {t c -tJ, there is not enough evidence to reject the null hypothesis and therefore, the 
false negative error rate will need to be verified. Go to Step 4. 

If the null hypothesis (y) was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates. To calculate the 
power of the test, assume that the true values for the mean and standard deviation are those 
obtained in the sample and use a statistical software package to generate the power curve of the 
two-sample t-test. A simple method to check on statistical power does not exist. 

The results of the test could be: 

1) the null hypothesis was rejected, and it seems p- p, > 6, {p, - p, 6& 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it 
seems p1 - p2 5 6, {p, - p2 z 6,J, but this conclusion. is uncertain because the sample size was 
too small. 

P1 - P2 5 60 {PI - P2 2 or 
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Box 3.34: An Example of Satterthwaite's t-Test (Unequal Variances) 
for Simple and Systematic Random Samples 

At a hazardous waste site, area 1 (cleaned using an in-situ methodology) was compared with a similar (but 
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two sites 
should be approximately equal in average contaminant levels. If the methodology did not work, then area 1 
should have a higher average than the reference area. Seven random samples were taken from area 1, and 
eight were taken from area 2. Because the contaminant concentrations in the two areas are supposedly 
equal, the null hypothesis is y: p, - p2 s 0 (Case 1). The false positive error rate was set at 5% and the false 
negative error rate was set at 20% 0) if the difference between the areas is 2.5 ppb. 

STEP 1: Sample Mean Sample Variance 
Area 1 9.2 ppm 1.3 p p d  
Area 2 6.1 ppm 5.7 p p d  

STEP 2: Using section 4.5, it was determined that the variances of the two populations were not equal, 
and therefore using Satterthwaite's method is appropriate: 

sNi = J1.317 + 5.718 = 0.9477 

9.2 -6.1 -0 = 3.271 STEP 3: t =  
0.9477 

Table A-l'was used with f degrees of freedom, where 

le3I7 + 5'71812 
5 .7' 

= 10.307 (ie. ,  10 degrees of @eedom) 
+ 

7'(7-1) 8Q-1) 

(recall that f is rounded down to the nearest integer), to find,g = 1.81 2 

Because t > bes (3.271 =- 1.812), the null hypothesis may be rejected. 

Because the null hypothesis was rejected, it would appear there is a difference between the two 
areas (area 1 being more contaminated than area 2, the reference area) and that the in-situ 
methodology has not worked as intended. 

STEP 5: 
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3.3.2 Comparing Two Proportions or Percentiles 

This section considers hypotheses concerning two population proportions (or two population 
percentiles); for example, one might use these tests to compare the proportion of children with elevated blood 
lead in one urban area compared with the proportion of children with elevated blood lead in another area. The 
population proportion is the ratio of the number of elements in a subset of the total population to the total 
number of elements, where the subset has some specific characteristic that the rest of the elements do not. A 
population percentile represents the percentage of elements of a population having values less than some 
threshold value C. 

Let P i  represent the true proportion for population 1, and P , represent the true proportion of 
population 2. The hypotheses considered in this section are: 

Case 1: H,: PI  - P, s 6, vs. HA: PI  - P, > 6,; and 

Case 2: H,: PI - P, 2 6, VS. HA: P i  - P, < 6,. 

An equivalent null hypothesis for Case 1, written in terms of percentiles, is H ,: the lOOP 
the 100Pzth percentile is C or larger, the reverse applying to Case 2. Since any hypothesis about the 
proportion below a threshold can be converted to an equivalent hypothesis about percentiles (see section 
3.2.2), this guidance will only consider hypotheses concerning proportions. 

percentile minus 

The information required for this test includes the null and alternative hypotheses (either Case 1 or 
Case 2); the gray region (i.e., a value 6, > 6, for Case 1 or a value 6, < 6, for Case 2, representing the bound 
of the gray region); the false positive error rate a at 6,; the false negative error rate p at 6,; and any additional 
limits on decision errors. 

3.3.2.1 Two-Sample Test for .Proportions 

PURPOSE 

The two-sample test for proportions can be used to compare two population percentiles or 
proportions and is based on an independent random sample of m (X ,, X,, . . . , X,) from the first population 
and an independent random sample size n (Y ,, Y,, . . . , Y,) from the second population. 

ASSUMPTIONS AND THEIR VERIFICATION 

The principal assumption is that of random sampling from the two populations. 

LIMITATIONS AND ROBUSTNESS 

The two-sample test for proportions is valid (robust) for any underlying distributional shape and is 
robust to outliers, providing they are not pure data errors. 

SEQUENCE OF STEPS 

Directions for a two-sample test for proportions for a simple random sample and a systematic simple 
random sample are given in Box 3.3-5; an example is provided in Box 3.3-6. 
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Box 3.3-5: Directions for a TwoSample Test for Proportions 
for Simple and Systematic Random Samples 

The following describes the steps for applying the two-sample test for proportions for Case 1 lHP, - P, s 0). 
Modifications for Case 2 (y: P, - P, L 0) are given in braces {}. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

Given m random samples &, X,, . . . , X, from the first population, and n samples from the 
second population, V;, Y,, . . . , Y,, let k, be the number of points from sample 1 which exceed C, 
and let k, be the number of points from sample 2 which exceed C. Calculate the sample 
proportions R = k,/m and p2 = k,/n. Then calculate the pooled proportion 

p = (k ,  +k2) / (m +n). 

Compute mp,, m(1-p,), np,, n(1-p2). If all of these values are greater than or equal to 5; 
continue. Otherwise, seek assistance from a statistician as analysis is complicated. 

Calculate z = (PI - p 2 )  / Jp(I - p)( l /rn + I/n). 

Use Table A-1 of Appendix A to find the critical value lz, such that l O O ( 1  a)”/. of the normal 
distribution is below qU. For example, ifa = 0.05 then z,, = 1.645. 

If z > z , ~  {z -z ,A, the null hypothesis may be rejected. Go to Step 5. 

If z > z,, {z c -z,J, there is not enough evidence to reject the null hypothesis. Therefore, the 
false negative error rate will need to be verified. Go to Step 4. 

If the null hypothesis (d) was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates. If only one false 
negative error rate (3) has been specified at F: - P,, it is possible to calculate the sample sizes 
that achieve the DQOs (assuming the proportions are equal to the values estimated from the 
sample) instead of calculating the power of the test. To do this, calculate 

and zp is the p” percentile of the standard normal distribution (Table A-I of Appendix A). If both 
m and n exceed m, the false negative error rate has been satisfied. If both m and n are below 
m’, the false negative error rate has not been satisfied. 

If m’ is between m and n, use a software package like the DEFT software (EPA G4D, 1994) or 
the DataQUEST software (EPA G-gD, 1996) to calculate the power of the test, assuming that 
the true values for the proportions F: and P2 are those obtained in the sample. If the estimated 
power is below 10, the false negative error rate has not been satisfied. 

The results of the test could be: 

1) the null hypothesis was rejected, and it seems the difference in proportions is greater than 0 
(less than 0); 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems 
the difference in proportions is less than or equal to 0 {greater than or equal to 0); or 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it 
seems the difference in proportions is less than or equal to 0 {greater than or equal to 0}, but this 
outcome is uncertain because the sample size was probably too small. 
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Box 3.38: An Example of a TwoSample Test for Proportions 
for Simple and Systematic Random Samples 

At a hazardous waste site, investigators must determine whether an area suspected to be contaminated with 
dioxin needs to be remediated. The possibly contaminated area (area 1) will be compared to a reference area 
(area 2) to see if dioxin levels in area 1 are greater than dioxin levels in the reference area. An inexpensive 
surrogate probe was used to determine if each individual sample is either "contaminated," Le., over the health 
standard of 1 ppb, or "clean," Le., less than the health standard of 1 ppb. The null hypothesis will be that the 
proportion or contaminant levels in area 1 is less than or equal to the proportion in area 2, oroHPl - P, i 0 
(Case 1). The decision maker is willing to accept a false positive decision error rate of 10°hX and a false- 
negative decision error rate of 5% @) when the difference in proportions between areas exceeds 0.10. A 
team collected 92 readings from area 1 (of which 12 were contaminated) and 80 from area 2, the reference 
area, (of which 10 were contaminated). 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

The sample proportion for area 1 is p = 12/92 = 0.1 30, the sample proportion for area 2 is 
p2 = 10180 = 0.125, and the pooled proportion p = (12 + IO) / (92 + 80) = 0.128. 

mp, = 12, m(1-pl) = 80, np, = 10, n(1-a) =70. Because these values are greater than or equal 
to 5, continue to step 3. 

z = (0.130 - 0.125) / J0.128(1 - 0.128)(1/92 + 1/80) = 0.098 

Table A- I  of Appendix A was used to find the critical valueA0 = 1.282. 

Because z 3 q.eo (0.098 + 1.282), there is not enough evidence to reject the null hypothesis and 
the false negative error rate will need to be verified. Go to Step 4. 

Because the null hypothesis (I$ was not rejected, calculate the sample size necessary to 
achieve the false positive and false negative error rates. Because only one false negative error 
rate (p = 0.05) has been specified (at a difference of p- P2 = O.l), it is possible to calculate the 
sample sizes that achieve the DQOs, assuming the proportions are equal to the values estimated 
from the sample: 

0.115 + 0.055 
2 

where 0.1275 = = 

Because both rn and n are less than ni the false negative error rate has not been satisfied. 

The null hypothesis was not rejected, and the false negative error rate was not satisfied. 
Therefore, it seems that there is no difference in proportions and that the contaminant 
concentrations of the investigated area and the reference area are probably the same. However, 
this outcome is uncertain because the sample sizes obtained were in all likelihood too small. 
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3.3.3 Nonparametric Comparisons of Two Populations 

In many cases, assumptions on distributional characteristics are difficult to verify or difficult to 
satisfy for both populations. In this case, several distribution-free test procedures are available that compare 
the shape and location of the two distributions instead of a statistical parameter (such as a mean or median). 
The statistical tests described below test the null hypothesis “H o:  the distributions of population 1 and 
population 2 are identical (or, the site is not more contaminated than background)” versus the alternative 
hypothesis “HA: part of the distribution of population 1 is located to the right of the distribution of 
population 2 (or the site is more contaminated than background).” Because of the structure of the hypothesis 
tests, the labeling of populations 1 and 2 is of importance. For most environmental applications, population 
1 is the area of interest (i.e., the potentially contaminated area) and population 2 is the reference area. . .  

There is no formal statistical parameter of interest in the hypotheses stated above. However, the 
concept of false positive and false negative error rates still applies. 

3.3.3.1 The Wilcoxon Rank Sum Test 

PURPOSE 

The Wilcoxon rank sum test can be used to compare two population distrjbutions based on m 
independent random samples X ,, X,, . . . , X, from the first population, and n independent random samples 
Y,, Y,, . . . , Y, from the second population. When applied with the Quantile test (section 3.3.3.2), the 
combined tests are most powerful for detecting true differences between two population distributions. 

ASSUMPTIONS AND THEIR VERIFICATION 

The validity of the random sampling and independence assumptions should be verified by review of 
the procedures used to select the sampling points. The two underlying distributions are assumed to have the 
same shape and dispersion, so that one distribution differs by some fixed amount (or is increased by a 
constant) when compared to the other distribution. For large samples, to test whether both site distributions 
have approximately the same shape, one can create and compare histograms for the samples. 

LIMITATIONS AND ROBUSTNESS 

The Wilcoxon signed rank test may produce misleading results if many data values are the same. 
When values are the same, their relative ranks are the same, and this has the effect of diluting the statistical 
power of the Wilcoxon rank sum test. Estimated concentrations should be reported for data below the 
detection limit, even if these estimates are negative, because their relative magnitude to the rest of the data is 
of importance. An important advantage of the Wilcoxon rank sum test is its partial robustness to outliers, 
because the analysis is conducted in terms of rankings of the observations. This limits the influence of 
outliers because a given data point can be no more extreme than the first or last rank. 

SEQUENCE OF STEPS 

Directions and an example for the Wilcoxon rank sum test are given in Box 3.3-7 and Box 3.3-8. 
However, if a relatively large number of samples have been taken, it is more efficient in terms of statistical 
power to use a large sample approximation to the Wilcoxon rank sum test (Box 3.3-9) to obtain the critical 
values of W. 
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Box 3.3-7: Directions for the Wilcoxon Rank Sum Test 
for Simple and Systematic Random Samples 

Let X,, X,, . . . , X, represent the m data points from population 1 and X Y,, . . . , Y, represent the n data 
points from population 2 where both m and n are less than or equal to IO. For this test, the null hypothesis 
will be that there is no difference between the two populations. The alternative hypothesis will be that 
population 1 is located to the right of population 2 for Case 1 or that population 2 is located to the right of 
population 1 for Case 2. If either m or n is larger than 10, use Box 3.3-9. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

List and rank the measurements from both populations from smallest to largest, keeping track of 
which population contributed each measurement. The rank of 1 is assigned to the smallest 
value, the rank of 2 to the second smallest value, and so forth. If there are ties, assign the 
average of the ranks that would otherwise have been assigned to the tied observations. 

For Case 1, calculate Was the sum of the ranks of the data from population 2. 
For Case 2. calculate Was the sum of the ranks of the data from population 1. 

m(m+l) for Case 2. Calculate W, = W - - for Case 1 or calculate Wxy = W - n(n + 1) 
2 2 

Use Table A-7 of Appendix A to find the critical value !.y 

If W,, 5 w,, the null hypothesis may be rejected. Go to Step 6. 

If W,,> w,, there is not enough evidence to reject the null hypothesis. Therefore, the false 
negative error rate will need to be verified. Go to Step 5. 

If the null hypothesis (I$ was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates using a software 
package like the DEFT software (EPA G4D, 1994) or the DataQUEST software (EPA G-gD, 
1996). (Power calculations tend to be much more difficult for nonparametric procedures than for 
parametric procedures.) If only one false negative error r a t a  has been specified (ata,), it is 
possible to calculate the sample size that achieves the DQOs, assuming the true mean and 
standard deviation are equal to the values estimated from the sample, instead of calculating the 
power of the test. If m and n are large, calculate: 

where < is the p" percentile of the standard normal distribution (Table A-1 of Appendix A). Then, 
multiply m* and n* by 1.16 to account for loss in efficiency, and, if 1.161-12 m and 1.16n' 5 n, the 
false negative error rate has been satisfied; if the values of m and n are otherwise, the false 
negative error rate has not been satisfied. 

The results of the test could be: 

1) the null hypothesis was rejected, and it seems that population 1 is located to the right of 
population 2 for Case 1 or that population 2 is located to the right of population 1 for Case 2. 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems 
there is no difference between the two populations; or 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it 
seems there is no difference between the two populations, but this result is uncertain because the 
sample sizes were probably too small. 
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Box 3.38:  An Example of the Wilcoxon Rank Sum Test 
for Simple and Systematic Random Samples 

At a hazardous waste site, area 1 (cleaned using an in-situ methodology) was compared with a similar (but 
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two sites 
should be approximately equal in average contaminant levels. If the methodology did not work, then area 1 
should have a higher average than the reference area. The null hypothesis will be that there is no difference 
between the two areas. Since area 1 was previously contaminated, the alternative hypothesis will be that 
contaminant levels in area 1 are larger (located to the right) than those in area 2 (Case 1). The false positive 
error rate was set at 5% and the false negative error rate was set at 20”/8(1 if the difference between the 
areas is 2.5 ppb. Seven random samples were taken from area 1 and eight samples were taken from area 2: 

Area 1 Area 2 
17, 23, 26, 5 16, 20, 5 . 4  

, 

13, 13, 12 8, 10,7, 3 

STEP 1 : The data listed and ranked by size are (Area 1 denoted by *): 

Data (ppb): 3, 4, 5, 5*, 7, 8*,  10, 12, 13*, 13*, 16, 17*, 20, 23*, 26* 
Rank: 1, 2.3.5,3.5*, 5, 6*, 7, 8, 9.5*,9.5* 11, 12*, 13, 14*, 15* 

STEP 2: W = sum of ranks from area 2 = 50.5 

STEP 3: W, = 50.5 - 8(8 + 1)/2 = 14.5 

STEP 4: Using Table A-7 of Appendix A, wo5 = 13. Because V& is greater than &,05, do not reject the 
null hypothesis. 

The null hypothesis was not rejected and it would be appropriate to calculate the probable power 
of the test. However, because the number of samples is small, extensive computer simulations 
are required in order to estimate the power of this test. Therefore, a statistician should be 
consulted. 

STEP 5: 

STEP 6: The null hypothesis was not rejected. Therefore, it is likely that there is no difference between the 
investigated area and the reference area, although the statistical power is low due to the small 
sample sizes involved. 
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Box 3.3-9: Directions for the Large Sample Approximation 
to the Wilcoxon Rank Sum Test 

for Simple and Systematic Random Samples 

Let X,, X,, . . . , X, represent the m data points from population 1 and 
points from population 2 where both n and m are greater than IO. The null hypothesis will be that there is no 
difference between the two populations. The alternative hypothesis will be that population 1 is larger than 
population 2 for Case 1 or that population 2 is larger than population 1 for Case 2. 

STEP 1 : 

Y,, . . . , Y, represent the n data 

List and rank the measurements from both populations from smallest to largest, keeping track of 
which population contributed each measurement. The rank of 1 is assigned to the smallest 
value, the rank of 2 to the second smallest value, and so forth. If there are ties, assign the 
average of the ranks that would otherwise have been assigned to the tied observations. 

For Case 1, calculate Was the sum of the ranks of the data from population 2. 
For Case 2, calculate Was the sum of the ranks of the data from population 1. 

STEP 2: 

n(m+n+l) w -  ..+ m(m+n+l) w -  
L L 

STEP 3: Calculate z = for Case 1 or z = for Case 2. 
Jmn(m +n + 1 )/2 Jmn(m +n + 1 )I2 

STEP 4: Use Table A-I of Appendix A to find the critical value&, such that 100(1a)% of the normal 
distribution is below 4,. 

If z > zIa, there is not enough evidence to reject the null hypothesis and the false negative error 
rate should be verified. Go to Step 5. 

If z 5 zl-, the null hypothesis may be rejected. Go to Step 6. 

STEP 4: If the null hypothesis (u) was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false positive and false negative error rates using a statistical 
software package. (Power calculations tend to be more difficult for nonparametric procedures 
than for parametric procedures.) If only one false negative error r a t a  has been specified (at 
&), it is possible to calculate the sample size that achieves the DQOs, assuming the true mean 
and standard deviation are equal to the values estimated from the sample, instead of calculating 
the power of the test. If m and n are large, calculate: 

where 5 is the p” percentile of the standard normal distribution (Table A-I of Appendix A). Then, 
multiply mf and n* by 1 .I6 to account for a loss in efficiency. If 1 . 1 6 d  m and 1.16n’ 5 n, the 
false negative error rate has been satisfied. Otherwise, the false negative error rate has not been 
satisfied. 

STEP 6: The results of the test could be: 

I) the null hypothesis was rejected, and it seems that population 1 is greater than population 2 
for Case 1 or that population 2 is greater than population I for Case 2. 

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems 
there is no difference between the two populations; or 

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it 
seems there is no difference between the two populations, but this result is uncertain because the 
sample sizes were probably too small. 
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3.3.3.2 The Quantile Test 

PURPOSE 

The Quantile test can be used to compare two populations based on the independent random samples 
X,, X,, . . ., X, from the first population and Y I ,  Y, ,  . . ., Y ,  from the second population. When the Quantile 
test and the Wilcoxon rank sum test (section 3.3.3.1) are applied together, the combined tests are the most 
powerful at detecting true differences between two populations. 

ASSUMPTIONS AND THEIR VERIFICATION 

The Quantile test assumes that the data X I ,  X,, . . ., X, are a random sample from populdion 1, and 
the data Y ,, Y,,  . . ., Y, are a random sample from population 2, and the two random samples are independent 
of one another. The validity of the random sampling and independence assumptions is assured by using 
proper randomization procedures, either random number generators or tables of random numbers. The 
primary verification required is to review the procedures used to select the sampling points. The two 
underlying distributions are assumed to have the same underlying dispersion (variance). 

LIMITATIONS AND ROBUSTNESS 

The Quantile test is not robust to outliers. In addition, the test assumes either a systematic (e.g., a 
triangular grid) or simple random sampling was employed. The Quantile test may not be used for stratified 
designs. 

SEQUENCE OF STEPS 

The Quantile test is difficult to implement by hand. Therefore, directions are not included in this 
guidance. However, the DataQUEST software (EPA G-9D, 1996) can be used to conduct this test. 

3.3.4 Comparing Two Medians 

Let ji, represent the median of population 1 and ji, represent the median of population 2. The 
hypothesis considered in this section are: 

Case 1: H,: jiI - ji2 s 6,  vs. HA: jiI - ji, > 6,; and 

Case 2: H,: jiI - ji2 a 6, VS. HA: iiI - b2 < 6,. 

An example of a two-sample test for the difference between two population medians is comparing the median 
contaminant level at a Superfund site to the median of a background site. In this case, 6, would be zero. 

The median is also the 50 * percentile, and, therefore, the methods described in section 3.3.2 for 
percentiles and proportions may be used to test hypotheses concerning the difference between two medians by 
letting P I  = Po = 0.50. The Wilcoxon rank sum test (section 3.3.3.1) is also recommended for comparing two 
medians. This test is more powerful than those for proportions for symmetric distributions. 
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CHAPTER 4 

STEP 4: VERIFY THE ASSUMPTIONS OF THE STATISTICAL TEST 

THE DATA QUALITY ASSESSMENT PROCESS 

Conduct Preliminary Data Review 
~~ 

Verify the Assumptions 

c \ 

~ ~~~ 

FDrawonclusions From the Data I 

1 
\ 

VERIFY THE ASSUMPTIONS OF THE 
STATISTICAL TEST 

EU52Qx 

Examine the underlying assumptions of the statistical 
hypothesis test in light of the environmental data. 

Activities 

Determine Approach for Verifying Assumptions 
Perform Tests of Assumptions - Determine Corrective Actions 

lhels 

Tests of distributional assumptions - Tests for independence and trends 
Tests for dispersion assumptions 

Step 4: Verify the Assumptions of the Statistical Test 

0 Determine approach for verifying assumptions. 
Identify any strong graphical evidence from the preliminary data review. 
Review (or develop) the statistical model for the data. 
Select the tests for verifying assumptions. 

Q Perform tests of assumptions. 

If necessary, determine corrective actions. 

= 

Adjust for bias if warranted. 
Perform the calculations required for the tests. 

0 

Determine whether data transformations will correct the problem. 
If data are missing, explore the feasibility of using theoretical justification or 
collecting new data. 
Consider robust procedures or nonparametric hypothesis tests. 
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STEP 4: VERIFY THE ASSUMPTIONS OF THE STATISTICAL TEST 

Shapiro Wilk W Test 

Filliben's Statistic 

Coefficient of Variation Test 

Skewness and Kurtosis Tests 

Studentized Range Test 

Geary's Test 

Goodness-of-Fit Tests 

Tests for 
Distributional 
Assumptions 

4.2.2 

4.2.3 

4.2.4 BOX 4.2-1 BOX 4.2-1 

4.2.5 

4.2.6 BOX 4.2-2 BOX 4.2-2 

4.2.6 BOX 4.2-3 BOX 4.2-4 

4.2.7 

Tests for 
Trends 

Test of a Correlation Coefficient 

Mann-Kendall Test 

Tests for an Overall Monotonic Trend 

Tests for 
Outliers 

4.3.2.2 Box4.3.1 Box 4.3.1 

4.3.4.1 Box4.3.3 Box4.3.4 
4.3.4.2 Box4.3.5 Box4.3.6 

4.3.4.3 Box 4.3-8 

Tests for 
Dispersion 

~~ 

Extreme Value Test 

Discordance Test 

Transformations 

4.4.3 BOX 4.4-1 BOX 4.4-2 

4.4.4 BOX 4.4-3 BOX 4.4-4 

Data below 
Detection Limit 

~~ 

Rosner's Test 

Walsh's Test 

Test I Section I Directions I Example 

4.4.5 BOX 4.4-5 BOX 4.4-6 

4.4.6 BOX 4.4-7 
~ 

Confidence Intervals for a Variance 

F-Test 

4.5.1 BOX 4.5-1 BOX 4.5-1 

4.5.2 BOX 4.5-2 BOX 4.5-2 

Bartlett's Test 

Levene's Test 

4.5.3 BOX 4.5-3 BOX 4.5-4 

4.5.4 BOX 4.5-5 BOX 4.5-6 

~ 

Substitution Methods 

Cohen's Adjustment 

4.7.1 

4.7.2.1 BOX 4.7-1 BOX 4.7-2 

BOX 4.6-1 BOX 4.6-1 I 4*6 I I Logarithmic, Square Root, Inverse 
Sine, Box-Cox Transformations 

Trimmed Mean 

W insorization 

4.7.2.2 BOX 4.7-4 BOX 4.7-5 

4.7.2.3 BOX 4.7-6 BOX 4.7-7 
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CHAPTER 4 
STEP 4: VERIFY THE ASSUMPTIONS OF THE STATISTICAL TEST 

4.1 OVERVIEW AND ACTIVITIES 

In this step, the analyst should assess the validity of the statistical test chosen in step 3 by examining 
its underlying assumptions in light of the newly generated environmental data. The principal thrust of this 
section is the determination of whether the data support the underlying assumptions necessary for the selected 
test, or if modifications to the data are necessary prior to further statistical analysis. 

This determination can be performed quantitatively using statistical analysis of data to coqfirm or 
reject the assumptions that accompany any statistical test. Almost always, however, the quantitative 
techniques must be supported by qualitative judgments based on the underlying science and engineering 
aspects of the study. Graphical representations of the data, such as those described in Chapter 2, can provide 
important qualitative information about the reasonableness of the assumptions. Documentation of this step is ’ 

important, especially when subjective judgments play a pivotal role in accepting the results of the analysis. 

If the data support all of the key assumptions of the statistical test, then the DQA Process continues 
to the next step, drawing conclusions from the data (Chapter 5) .  However, often one or more of the 
assumptions will be called into question which may trigger a reevaluation of one of the previous steps. This 
iteration in the DQA Process is an important check on the validity and practicality of the results. 

4.1.1 Determine Approach for Verifying Assumptions 

In most cases, assumptions about distributional form, independence, and dispersion can be verified 
formally using the statistical tests described in the technical sections in the remainder of this chapter, 
although in some situations, information from the preliminary data review may serve as sufficiently strong 
evidence to support the assumptions. As part of this activity, the analyst should identify methods to verify 
that the type and quantity of data required to perform the desired test are available. The outputs of this 
activity should include a list of the specific tests that will be used to verify the assumptions. 

The methods and approach chosen for assumption verification depend on the nature of the study and 
its documentation. For example, if computer simulation was used to estimate the theoretical power of the 
statistical test, then this simulation model should be the basis for evaluation of the effect of changes to 
assumptions using estimates calculated from the data to replace simulation values. 

I If it is not already part of the design documentation, the analyst may need to formulate a statistical 
model that describes the data. In a statistical model, the data are conceptually decomposed into elements that 
are assumed to be “fixed” (Le., the component is either a constant but unknown feature of the population or is 
controlled by experimentation) or “random” (i.e., the component is an uncontrolled source of variation). 
Which components are considered fixed and which are random is determined by the assumptions made for the 
statistical test and by the inherent structure of the sampling design. The random components that represent 
the sources of uncontrolled variation could include several types of measurement errors, as well as other 
sources such as temporal andor spatial components. 

In addition to identifying the components that make up an observation and specifying which are fixed 
and which are random, the model should also define whether the various components behave in an additive or 
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multiplicative fashion (or some combination). For example, if temporal or spatial autocorrelations are 
believed to be present, then the model needs to identify the autocorrelation structure (see section 2.3.8). 

4.1.2 Perform Tests of Assumptions 

For most statistical tests, investigators will need to assess the reasonableness of assumptions in 
relation to the structure of the components making up an observation. For example, a t-test assumes that the 
components, or errors, are additive, uncorrelated, and normally distributed with homogeneous variance. 
Basic assumptions that should be investigated include: 

(1) Is it reasonable to assume that the errors (deviations from the model) are normally 
distributed? If adequate data are available, then standard tests for normality can be 
conducted ( e g ,  the Shapiro-Wilk test or the Kolmogorov-Smirnov test). 

(2) Is it reasonable to assume that errors are uncorrelated? While it is natural to assume that 
analytical errors imbedded in measurements made on different sample units are independent, 
other errors from other sources may not be independent. If sample units are “too close 
together,” either in time or space, independence may not hold. If the statistical test assumes 
independence and this assumption is not correct, the proposed false positive and false 
negative error rates ( CI and p) for the statistical test cannot be verified. 

(3) Is it reasonable to assume that errors are additive and have a constant variability? If 
sufficient data are available, a plot of the relevant standard deviations versus mean 
concentrations may be used to discern if variability tends to increase with concentration 
level. If so, transformations of the data may make the additivity assumption more tenable. 

One of the most important assumptions underlying the statistical procedures described herein is that 
there is no inherent bias (systematic deviation from the true value) in the data. The general approach adopted 
here is that if a long term bias is known to exist, then adjustment for this bias should be made, If bias is 
present, then the basic effect is to shift the power curves associated with a given test to the right or left, 
depending on the direction of the bias. Thus substantial distortion of the nominal Type I (false positive) and 
Type I1 (false negative) decision error rates may occur. In general, bias cannot be discerned by examination 
of routine data; rather, appropriate and adequate QA data are needed, such as performance evaluation data. If 
one chooses not to make adjustment for bias on the basis of such data, then one should, at a minimum, 
construct the estimated worse-case power curves so as to understand the potential effects of the bias. 

’ 

4.1.3 Determine Corrective Actions 

Sometimes the assumptions underlying the primary statistical test will not be satisfied and some type 
of corrective action will be required before proceeding. In some cases, a transformation of the data will 
correct a problem with distributional assumptions. In other cases, the data for verifLing some key assumption 
may not be available, and existing information may not support a theoretical justification of the validity of the 
assumption. In this situation, it may be necessary to collect additional data to veri@ the assumptions. If the 
assumptions underlying a hypothesis test are not satisfied, and data transformations or other modifications do 
not appear feasible, then it may be necessary to consider an alternative statistical test. These include robust 
test procedures and nonparametric procedures. Robust test procedures involve modifying the parametric test 
by using robust estimators. For instance, as a substitute for a t-test, a trimmed mean and its associated 
standard error (section 4.7.2) might be used to form a t-type statistic. 
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4.2 TESTS FOR DISTRIBUTIONAL ASSUMPTIONS 

- 

X = I  1.57 
15.63 11.00 11.75 10.45 13.18 10.37 10.54 11.55 11.01 10.23 s =  1.677 

Many statistical tests and models are only appropriate for data that follow a particular distribution. 
This section will aid in determining if a distributional assumption of a statistical test is satisfied, in particular, 
the assumption of normality. Two of the most important distributions for tests involving environmental data 
are the normal distribution and the lognormal distribution, both of which are discussed in this section. To test 
if the data follow a distribution other than the normal distribution or the lognormal distribution, apply the chi- 
square test discussed in section 4.2.7 or consult a statistician. 

0.2 

0.1 

n 

There are many methods available for verifying the assumption of normality ranging from simple to 
complex. This section discusses methods based on graphs, sample moments (kurtosis and skewness), sample 
ranges, the Shapiro-Wilk test and closely related tests, and goodness-of-fit tests. Discussions for the simplest 
tests contain step-by-step directions and examples based on the data in Table 4.2-1. These tests are 
summarized in Table 4.2-2. This section ends with a comparison of the tests to help the analyst select a test 
for normality. 

Table 4.2-1. Data for Examples in Section 4.2 

7- Normal Distribution - 

Lognormal Distribution - 

1 

0.2 

0.1 

n 

The assumption of normality is very important as it is the basis for the majority of statistical tests. 
A normal, or Gaussian, distribution is one of the most common probability distributions in the analysis of 
environmental data. A normal distribution is a reasonable model of the behavior of certain random 
phenomena and can often be used to approximate other probability distributions. In addition, the Central 
Limit Theorem and other limit theorems state that as the sample size gets large, some of the sample summary 
statistics (e.g., the sample mean) behave as if they are a normally distributed variable. As a result, a common 
assumption associated with parametric tests or statisticaLmodels is that the errors associated with data or a 
model follow a normal distribution. 

7- Normal Distribution - 

Lognormal Distribution - 

1 

The graph of a normally distributed random variable, a normal curve, is bell-shaped (see Figure 
4.2-1) with the highest point located at the mean which is equal to the median. A normal curve is symmetric 

" 
0 5 10 15 20 25 

Figure 4.2-1. Graph of a Normal and Lognormal Distribution 
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about the mean, hence the part to the left of the mean is a mirror image of the part to the right. In 
environmental data, random errors occurring during the measurement process may be normally distributed: 

Test Section 

Shapiro Wilk W 4.2.2 

Environmental data commonly exhibit frequency distributions that are non-negative and skewed with 
heavy or long right tails. Several standard parametric probability models have these properties, including the 
Weibull, gamma, and lognormal distributions. The lognormal distribution (Figure 4.2- 1) is a commonly used 
distribution for modeling environmental contaminant data. The advantage to this distribution is that a simple 
(logarithmic) transformation will transform a lognormal distribution into a normal distribution. Therefore, 
the methods for testing for normality described in this section can be used to test for lognormality if a 
logarithmic transformation has been used. 

Sample Data- 
Size Recommended Use QUEST 

< 50 Highly recommended. Yes 
Test 

Filliben's 
Statistic 

Coefficient of 
Variation Test 

4.2.3 s 100 Highly recommended. 

4.2.4 Any Only use to quickly 
discard an assumption of 
normality. 

Yes 

4.2.6 

4.2.6 

4.2.7 

4.2.7 , 

Yes 

> 50 Useful when tables for 
other tests are not 
available. 

s 1000 Highly recommended 
(with some conditions). 

Large" Useful for grouped data 
and when the comparison 
distribution is known. 

Usefil when tables for 
other tests are not 
available. 

> 50 

Skewness and 
Kurtosis Tests 

4.2.5 I ~ > 50 1 Useful for large sample I Yes 
sizes. 

Geary's Test 

Studentized 
Range Test 

Chi-square Test 

Lilliefors 
Kolmogorov- 
Smirnoff Test 

Yes 

Yes 

No 

No 

a The necessary sample size depends on the number of groups formed when implementing this test. Each 
group should contain at least 5 observations. 
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4.2.1 Graphical Methods 

Graphical methods (section 2.3) present detailed information about data sets that may not be 
apparent from a test statistic. Histograms, stem-and-leaf plots, and normal probability plots are some 
graphical methods that are useful for determining whether or not data follow a normal curve. Both the 
histogram and stem-and-leaf plot of a normal distribution are bell-shaped. The normal probability plot of a 
normal distribution follows a straight line. For non-normally distributed data, there will be large deviations in 
the tails or middle of a normal probability plot. 

Using a plot to decide if the data are normally distributed involves making a subjective decision. For 
extremely non-normal data, it is easy to make this determination; however, in many cases the decision is not 
straightforward. Therefore, formal test procedures are usually necessary to test the assumption of hormality . 

4.2.2 Shapiro-Wilk Test for Normality (the W test) 

One of the most powerful tests for normality is the W test by Shapiro and Wilk; This test is similar 
to computing a correlation between the quantiles of the standard normal distribution and the ordered values of 
a data set. If the normal probability plot is approximately linear (i.e., the data follow a normal curve), the test 
statistic will be relatively high. If the normal probability plot contains significant curves, the test statistic will 
be relatively low. 

. .  

The W test is recommended in several EPA guidance documents and in many statistical texts. 
Tables of critical values for sample sizes up to 50 have been developed for determining the significance of the 
test statistic. However, this test is difficult to compute by hand since it requires two different sets of tabled 
values and a large number of summations and multiplications. Therefore, directions for implementing this 
test are not given in this document, but the test is contained in the DataQUEST software package (QA/G-9D, 
1996). 

4.2.3 Extensions of the Shapiro-Wilk Test (Filliben’s Statistic) 

Because the W test may only be used for sample sizes less than or equal to 50, several related tests 
have been proposed. DAgostino’s test for sample sizes between 50 and 1000 and Royston’s test for sample 
sizes up to 2000 are two such tests that approximate some of the key quantities or parameters of the W test. 

Another test related to the W test is the Filliben statistic, also called the probability plot correlation 
coefficient. This test measures the linearity ofthe points on the normal probability plot. Similar to the W 
test, if the normal probability plot is approximately linear (i.e., the data follow a normal curve), the 
correlation coefficient will be relatively high. If the normal probability plot contains significant curves (i.e., 
the data do not follow a normal curve), the correlation coefficient will be relatively low. Although easier to 
compute that the W test, the Filliben statistic is still difficult to compute by hand. Therefore, directions for 
implementing this test are not given in this guidance; however, it is contained in the DQA DataQUEST 
software package (QA/G-9D7 1996). 
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4.2.4 Coefficient of Variation 

The coefficient of variation (CV) may be used to quickly determine whether or not the data follow a 
normal curve by comparing the sample CV to 1. The use of the CV is only valid for some environmental 
applications if the data represent a non-negative characteristic such as contaminant concentrations. If the CV 
is greater than 1, the data should not be modeled with a normal curve. However, this method should not be 
used to conclude the opposite, i.e., do not conclude that the data can be modeled with a normal curve if the 
CV is less than 1. This test is to be used only in conjunction with other statistical tests or when graphical 
representations of the data indicate extreme departures from normality. Directions and an example of this 
method are contained in Box 4.2-1. 

4.2.5 Coefficient of SkewnessICoefficient of Kurtosis Tests 

The degree of symmetry (or asymmetry) displayed by a data set is measured by the coefficient of 
skewness (gJ. The coefficient of kurtosis, g ,, measures the degree of flatness of a probability distribution 
near its center. Several test methods have been proposed using these coefficients to test for normality. One 
method tests for normality by adjusting the coefficients of skewness and kurtosis to approximate a standard 
normal distribution for sample sizes greater than 50. 

Two other tests based on these coefficients include a combined test based on a chi-squared ( x') 
distribution and Fisher's cumulant test. Fisher's cumulant test computes the exact sampling distribution of g 
and g,; therefore, it is more powerful than previous methods which assume that the distributions of the two 
coefficients are normal. Fisher's cumulant test requires a table of critical values, and these tests require a 
sample size of greater than 50. Tests based on skewness and kurtosis are rarely used as they are difficult to 
compute and less powerful than many alternatives. 

Box 4.2-1 : Directions for the Coefficient of Variation Test for 
Environmental Data and an Example 

Directions 

1 "  2 1i2 - [---CCX,-x, n-1 j - 1  1 
STEP 1: Calculate the coefficient of variation (CV): CV = s / X = 

n i-1 

STEP 2: If CV > 1 .O, conclude that the data are not normally distributed. Otherwise, the test is inconclusive. 

ExamDle 

The following example demonstrates using the coefficient of variation to determine that the data in Table 4.2-1 
should not be modeled using a normal curve. 

STEP 1: Calculate the coefficient of variation (CV): CV = 

STEP 2: Since 0.145 + 1 .O, the test is inconclusive. 

s 1677 
,y 11.571 

= - = 0.145 
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4.2.6 Range Tests 

Almost 100% of the area of a normal curve lies within k5 standard deviations from the mean and 
tests for normality have been developed based on this fact. Two such tests, which are both simple to apply, 
are the studentized range test and Geary's test. Both of these tests use a ratio of an estimate of the sample 
range to the sample standard deviation. Very large and very small values of the ratio then imply that the data 
are not well modeled by a normal curve. 

a. The studentized range test (or w/s test). This test compares the range of the sample to the 
sample standard deviation. Tables of critical values for sample sizes up to 1000 (Table A-2 of Appendix A) 
are available for determining whether the absolute value of this ratio is significantly large. Directions for 
implementing this method are given in Box 4.2-2 along with an example. The studentized range t&t does not 
perform well if the data are asymmetric and if the tails of the data are heavier than the normal distribution. In 
addition, this test may be sensitive to extreme values. Unfortunately, lognormally distributed data, which are 
common in environmental applications, have these characteristics. If the data appear to be lognormally 
distributed, then this test should not be used. In most cases, the studentized range test performs as well as the 
Shapiro-Wilk test and is much easier to apply. 

b. Geary's Test. Geary's test uses the ratio of the mean deviation of the sample to the sample 
standard deviation. This ratio is then adjusted to approximate a standard normal distribution. Directions for 
implementing this method are given in Box 4.2-3 and an example is given in Box 4.2-4. This test does not 
perform as well as the Shapiro-Wilk test or the studentized range test. However, since Geary's test statistic is 
based on the normal distribution, critical values for all possible sample sizes are available. 

Box 4.2-2: Directions for Studentized Range Test 
and an Example 

11 Directions 

11 STEP 1 : Calculate sample range (w) and sample standard deviation (s) using section 2.2.3. 

'n) - 'I) to the critical values given in Table A-2 (labeled a and b). STEP 2: Compare W = 
S S 

If w/s falls outside the two critical values then the data do not follow a normal curve. 

Example 

The following example demonstrates the use of the studentized range test to determine if the data from Table 
4.2-1 can be modeled using a normal curve. 

11 STEP 1: , w = 5.) - X,,) = 15.63 - 10.23 = 5.40 and s = 1.677. 

STEP 2: w/s = 5.4 11.677 = 3.22. The critical values given in Table A-2 are 2.51 and 3.875. Since 3.22 
falls between these values, the assumption of normality is not rejected. 
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Box 4.23: Directions for Geary's Test 

Calculate the sample meaG, the sample sum of squares (SSS), and the sum of absolute 
deviations (SAD): 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

" 

n cc n 

n ; - I  i- I n i-  I 
j = -  1 "  Ex,, sss = ET2 - , and SAD = cIy-3 

SAD Calculate Geary's test statistic a = m 
Test "a" for significance by computing 

constants used to achieve normality. 

Use Table A-I of Appendix A to find the critical value& such that l O O ( 1  a)?40 of the normal 
distribution is below q4. For example, ifa = 0.05, then q4 = 1.645. Declare "a" to be 
sufficiently small or large (Le., conclude the data are not normally distributed) $1 Z,-. 

= a - 0'7979. Here 0.7979 and 0.2123 are 
0.21 23/fi 

Box 4.24: Example of Geary's Test 

The following example demonstrates the use of Geary's test to determine if the data from Table 4.2-1 can be 
modeled using a normal curve. 

1 "  
STEP 1: 2 = - E X ,  = 11.571, SAD = f: 14-4 = 11.694, and 

n i - l  i- I 

n <2T)2 
sss = - = 1364.178 - 1338.88 = 25.298 

i- 1 n 

0.735 - 0.7979 = -o.934 
STEP3: 2 = 

0.2 123 /fl 
STEP 4: Since kl 1 1.64 (5% significance level), there is not enough information to conclude that the 

data do not follow a normal distribution. 
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4.2.7 Goodness-of-Fit Tests 

Goodness-of-fit tests are used to test whether data follow a specific distribution, i.e., how "good" a 
specified distribution fits the data. In verifying assumptions of normality, one would compare the data to a 
normal distribution with a specified mean and variance. 

a. Chi-square Test. One classic goodness-of-fit test is the chi-square test which involves breaking 
the data into groups and comparing these groups to the expected groups from the known distribution. There 
are no fixed methods for selecting these groups and this test also requires a large sample size since at least 5 
observations per group are required to implement this test. In  addition, the chi-square test does not have the 
power of the Shapiro-Wilk test or some of the other tests mentioned above. 

\. 

b. Kolmogorov-Smirnoff (K-S) Test and Lilliefors K-S Test. Another goodness-of-fit test is the 
Kolmogorov Smirnoff (K-S) test which also tests whether the data follow a specific distribution with known 
parameters such as the mean and variance. This test requires that the sample size of the data be greater than 
50. The Lilliefors K-S test may be used for testing if the data are normally distributed when the sample size 
is larger than 50 and the distribution parameters are estimated from the data. The Lilliefors K-S test is more 
powerful than the chi-square test for large sample sizes and is recommended in several EPA guidance 
documents. 

4.2.8 Recommendations 

Analysts can perform tests for normality with samples as small as 3. However, the tests lack 
statistical power for small sample size. Therefore, for small sample sizes, it is recommended that a 
nonparametric statistical test (i.e., one that does not assume a distributional form of the data) be selected 
during Step 3.of the DQA Process in order to avoid incorrectly assuming the data are normally distributed 
when there is simply not enough information to test this assumption. 

If the sample size is less than 50, then this guidance recommends using the Shapiro-Wilk W test, 
wherever practicable. The Shapiro-Wilk W test is one of most powerful tests for normality and it is 
recommended in several EPA guidance as the preferred test when the sample size is less than 50. This test is 
difficult to implement by hand but can be applied easily using the DQA DataQUEST software package 
(QA/G-9DY 1996). If the Shapiro-Wik W test is not feasible, then this guidance recommends using either 
Filliben's statistic or the studentized range test. Filliben's statistic performs similarly to the Shapiro-Wilk 
test. The studentized range is a simple test to perform; however, it is not applicable for non-symmetric data 
with large tails. If the data are not highly skewed and the tails are not significantly large (compared to a 
normal distribution), the studentized range provides a simple and powerful test that can be calculated by 
hand. All three of these tests are included in the DataQUEST software (QA/G-9DY 1996). 

If the sample size is greater than 50, this guidance recommends using either the Filliben's statistic or 

' 
the studentized range test. However, if critical values for these tests (for the specific sample size) are not 
available, then this guidance recommends implementing either Geary's test or the Lilliefors Kolmogorov- 
Smimoff test. Geary's test is easy to apply and uses standard normal tables similar to Table A-1 of Appendix 
A and widely available in standard textbooks. Lilliefors Kolmogorov-Smimoff is more statistically powerful 
but is also more difficult to apply and uses specialized tables not readily available. 
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4.3 TESTS FOR TRENDS 

4.3.1 Introduction 

This section presents statistical tools for detecting and estimating trends in environmental data. The 
detection and estimation of temporal or spatial trends are important for many environmental studies or 
monitoring programs. In cases where temporal or spatial patterns are strong, simple procedures such as time 
plots or linear regression over time can reveal trends. In more complex situations, sophisticated statistical 
models and procedures may be needed. For example, the detection of trends may be complicated by the 
overlaying of long- and short-term trends, cyclical effects (e&, seasonal or weekly systematic variations), 
autocorrelations, or impulses or jumps (e.g., due to interventions or procedural changes). 

The graphical representations of Chapter 2 are recommended as the’first step to identify possible 
trends. A plot of the data versus time is recommended for temporal data, as it may reveal long-term trends 
and may also show other major types of trends, such as cycles or impulses. A posting plot is recommended 
for spatial data to reveal spatial trends such as areas of high concentration or areas that were inaccessible. 

For most of the statistical tools presented below, the focus is on monotonic long-term trends (Le., a 
trend that is exclusively increasing or decreasing, but not both), as well as other sources of systematic 
variation, such as seasonality. The investigations of trend in this section are limited to one-dimensional 
domains, e.g., trends in a pollutant concentration over time. The current edition of this document does not 
address spatial trends (with 2- and 3-dimensional domains) and trends over space and time (with 3- and 4- 
dimensional domains), which may involve sophisticated geostatistical techniques such as kriging and require 
the assistance of a statistician. Section 4.3.2 discusses estimating and testing for trends using regression 
techniques. Section 4.3.3 discusses more robust trend estimation procedures, and section 4.3.4 discusses 
hypothesis tests for detecting trends under several types of situations. 

4.3.2 Regression-Based Methods for Estimating and Testing for Trends 

4.3.2.1 Estimating a Trend Using the Slope of the Regression Line 

The classic procedures for assessing linear trends involve regression. Linear regression is a 
commonly used procedure in which calculations are performed on a data set containing pairs of observations 
(Xi, Yi), so as to obtain the slope and intercept of a line that “best fits” the data. For temporal trends, the X 
values represent time and the Y values represent the observations, such as contaminant concentrations. An 
estimate of the magnitude of trend can be obtained by performing a regression of the data versus time (or 
some function of the data versus some function of time) and using the slope of the regression line as the 
measure of the strength of the trend. 

Regression procedures are easy to apply; most scientific calculators will accept data entered as pairs 
and will calculate the slope and intercept of the best fitting line, as well as the correlation coefficient r (see I 

section 2.2.4). However, regression entails several limitations and assumptions. First of all, simple linear 
regression (the most commonly used method) is designed to detect linear relationships between two variables; 
other types of regression models are generally needed to detect non-linear relationships such as cyclical or 
non-monotonic trends. Regression is very sensitive to extreme values (outliers), and presents difficulties in 
handling data below the detection limit, which are commonly encountered in environmental studies. 
Regression also relies on two key assumptions: normally distributed errors, and constant variance. It may be 
difficult or burdensome to verify these assumptions in practice, so the accuracy of the slope estimate may be 
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suspect. Moreover, the analyst must ensure that time plots of the data show no cyclical patterns, outlier tests 
show no extreme data values, and data validation reports indicate that nearly all the measurements were 
above detection limits. Because of these drawbacks, regression is not recommended as a general tool for 
estimating and detecting trends, although it may be useful as an informal, quick, and easy screening tool for 
identifying strong linear trends. 

4.3.2.2 Testing for Trends Using Regression Methods 

The limitations and assumptions associated with estimating trends based on linear regression 
methods apply also to other regression-based statistical tests for detecting trends. Nonetheless, for situations 
in which regression methods can be applied appropriately, there is a solid body of literature on hypothesis 
testing using the concepts of statistical linear models as a basis for inferring the existence of tempha1 trends. 
The methodology is complex and beyond the scope of this document. 

For simple linear regression, the statistical test of whether the slope is significantly different .from 
zero is equivalent to testing if the correlation coefficient is significantly different from zero. Directions for 
this test are given in Box 4.3-1 along with an example. This test assumes a linear relation between Y and X 
with independent normally distributed errors and constant variance across all X and Y values. Censored 
values (e.g., below the detection limit) and outliers may invalidate the tests. 

Box 4.3-1 : Directions for the Test for a Correlation Coefficient 
and an Example 

Directions 

STEP 1 : Calculate the correlation coefficient, r (section 2.2.4). 

r 
STEP 2: Calculate the t-value t = 

STEP 3: . Use Table A-I of Appendix A to find the critical value& such that lOO(1 aE)% of the t 
distribution with n - 2 degrees of freedom is below,&. For example, ifa = 0.10 and n = 17, then 
n-2 = 15 and t,& = 1.753. Conclude that the correlation is significantly different from zero if 
Itl> t,&. 

Example: Consider the following data set (in ppb): for Sample 1, arsenic (X) is 4.0 and lead (Y) is 8.0; for 
Sample 2, arsenic is 3.0 and lead is 7.0; for Sample 3, arsenic is 2.0 and lead is 7.0; and for Sample 4, 
arsenic is 1 .O and lead is 6.0. 

STEP 1 : 

STEP 2: t = .\i o::2 = 4.26 

In section 2.2.4, the correlation coefficient r for this data was calculated to be 0.949. 

1 - 0.9492 

STEP 3: Using Table A-I of Appendix A, 
of freedom. Therefore, there appears to be a significant correlation between the two variables 
lead and arsenic. 

= 2.920 for a 10% level of significance and 4-2 = 2 degrees 
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4.3.3 General Trend Estimation Methods 

4.3.3.1 Sen’s Slope Estimator 

Sen’s Slope Estimate is a nonparametric alternative for estimating a slope. This approach involves 
computing slopes for all the pairs of ordinal time points and then using the median of these slopes as an 
estimate of the overall slope. As such, it is insensitive to outliers and can handle a moderate number of 
values below the detection limit and missing values. Assume that there are n time points (or n periods of 
time), and let X i  denote the data value for the i Ih time point. If there are no missing data, there will be n(n-1)/2 
possible pairs of time points (i, j) in which i > j. The slope for such a pair is called a painvise slope, b ,, and is 
computed as b, = (Xi - Xj) / (i - j). Sen‘s slope estimator is then the median of the n(n-1)/2 painvise slopes. 

If there is no underlying trend, then a given X is as likely to be above another X as it is below. 
Hence, if there is no underlying trend, there would be an approximately equal number of positive and negative 
slopes, and thus the median would be near zero. Due to the number of calculations required, Sen’s estimator 
is rarely calculated by hand and directions are not given in this document. However, the estimator is 
contained in the DQA DataQUEST software package (QA/G-9D, 1996). 

4.3.3.2 Seasonal Kendall Slope Estimator 

If the data exhibit cyclic trends, then Sen’s slope estimator can be modified to account for the cycles. 
For example, if data are available for each month for a number of years, 12 separate sets of slopes would be 
determined (one for each month of the year); similarly, if daily observations exhibit weekly cycles, seven sets 
of slopes would be determined, one for each day of the week. In these estimates, the above painvise slope is 
calculated for each time period and the median of all of the slopes is an estimator of the slope for a long-term 
trend. This is known as the seasonal Kendall slope estimator. Because of the number of calculations 
required, this estimator is rarely calculated by hand so directions are not given in this document. The 
seasonal Kendall slope estimator is contained in the DataQUEST software package (QA/G-9D, 1996). 

4.3.4 Hypothesis Tests for Detecting Trends 

Most of the trend tests treated in this section involve the Mann-Kendall test or extensions of it. The 
Mann-Kendall test does not assume any particular distributional form and accommodates trace values or 
values below the detection limit by assigning them a common value. The test can also be modified to deal 
with multiple observations per time period and generalized to deal with multiple sampling locations and 
seasonality. 

4.3.4.1 One Observation per Time Period for Qne Sampling Location 

The Mann-Kendall test involves computing a statistic S ,  which is the difference between the number 
of painvise slopes (as described in 4.3.3.1) that are positive minus the number that are negative. If S is a 
large positive value, then there is evidence of an increasing trend in the data. If S is a large negative value, 
then there is evidence of a decreasing trend in the data. The null hypothesis or baseline condition for this test 
is that there is no temporal trend in the data values, Le., “H ,,: no trend”. The alternative condition or 
hypothesis will usually be either “H A: upward trend” or “HA: downward trend.” 

The basic Mann-Kendall trend test involves listing the observations in temporal order, and 
computing all differences that may be formed between measurements and earlier measurements, as depicted 
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in Box 4.3-2. The test statistic is the difference between the number of strictly positive differences and the 
number of strictly negative differences. If there is an underlying upward trend, then these differences will 
tend to be positive and a sufficiently large value of the test ‘statistic will suggest the presence of an upward 
trend. Differences of zero are not included in the test statistic (and should be avoided, if possible, by 
recording data to sufficient accuracy). The steps for conducting the Mann-Kendall test for small sample sizes 
(i.e., less than 10) are contained in Box 4.3-3 and an example is contained in Box 4.3-4. 

For sample sizes greater than 10, a normal approximation to the Mann-Kendall test is quite accurate. 
Directions for this approximation are contained in Box 4.3-5 and an example is given in Box 4.3-6. Tied 
observations (i.e., when two or more measurements are equal) degrade the statistical power and should be 
avoided, if possible, by recording the data to sufficient accuracy. 

Box 4.3-2: “Upper Triangular” Data for Basic Mann-Kendall Trend Test 
with a Single Measurement at Each Time Point 

Data Table 

. . .  f F 1  t l  (time from earliest to latest) 
Xn (actual values recorded) 

Original Time t, t, t3  t 
Measurements XI X, X, X, . . . x,, 

I 

XI 

x2 

X,l I X,-Xw1 

After performing the subtractions this table converts to: 

Original Time 
Measurements 

XI 

X2 

X,, 

Xn.1 

tl t z  13 t . . .  tl t # of + # o f -  

(>O) (CO) 
XI , x2 x3 x4 . . .  Xn.1 Xn Differences Differences 

YZI y31 y4 1 . . .. Y(n-l)l Ynl 

NOTE: X,,-Y,=O do not contribute to either total and are discarded. Total # >O Total # <O 

where Y,, = sign (X,-XJ = + if & - X, > 0 
= 0 ifX,-X,=O 
= - i f&-X,<O 
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Box 4.3-3: Directions for the Mann-Kendall Trend Test for Small Sample Sizes 

If the sample size is less than 10 and there is only one datum per time period, the Mann-Kendall Trend Test for 
small sample sizes may be used. 

STEP 1: List the data in the order collected over time: >x X,, ..., X,,, where >c is the datum at time 1. Assign a 
value of DU2 to values reported as below the detection limit (DL). Construct a "Data Matrix" similar to 
the top half of Box 4.3-2. 

Compute the sign of all possible differences as shown in the bottom portion of Box 4.3-2. 

Compute the Mann-Kendall statistic S ,  which is the number of positive signs minus the number of 
negative signs in the triangular table: S = (number of + signs) - (number of - signs). 

Use Table A-I  1 of Appendix A to determine the probability p using the sample size n and the absolute 
value of the statistic S .  For example, if n=5 and S=8, p=0.042. 

For testing the null hypothesis of no trend against y(upward trend), reject Q if S 5 0 and if p <a. 
For testing the null hypothesis of no trend against b(downward trend), reject Q if S < 0 and if p <a. 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 1 : 

STEP 2: 

The data listed in order by time are: 56, 1 1,8, 10. 

A triangular table (see Box 4.3-2) was used to construct the possible differences. The sum of signs of 
the differences across the rows are shown in the columns 7 and 8. 

Time 1 2 3 4 5 No. of+ No. of 
Data 5 6 11 8 10 Signs -Signs 

5 + + + + 4 0 
6 + + + 3 0 

11 0 2 
0 1 8 + 

8 2 

I 

- - 

STEP 3: 

STEP 4: 

STEP 5: 

Using the table above, S = 8 - 2 = 6. 

From Table A-1 1 of Appendix A for n = 5 and S = 6, p = 0.1 17. 

Since S > 0 but p = 0.1 1 7 ~  0.05, the null hypothesis is not rejected. Therefore, there is not enough 
evidence to conclude that there is an increasing trend in the data. 

Box 4.3-4: An Example of Mann-Kendall Trend Test for Small Sample Sizes 

Consider 5 measurements ordered by the time of their collection: 5,6, 11, 8 ,  and I O .  This data will be used to tesl 
the null hypothesis, I-& no trend, versus the alternative hypothesis Vof an upward trend at ana = 0.05 significance 
level. 
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Box 4.34: Directions for the Mann-Kendall Procedure Using Normal Approximation 

If the sample size is 10 or more, a normal approximation to the Mann-Kendall procedure may be used. 

STEP 1: 

STEP 2: 

Complete steps 1, 2, and 3 of Box 4.3-3. 

Calculate the variance of S: V(S) = 
n(n-l)(2n+5) 

18 
If ties occur, let g represent the number of tied groups and wrepresent the number of data points in the 

1 
p"'group. The variance of S is:V(S) = - [n(n-l)(2n+5) - 2 wP(wP-1)(2wp+5)] 

18 P'I 

STEP 4: Calculate Z== if S > O,z= 0 if S = 0, or z=- '+' i f S e 0 .  
[ V(S)l% [ V(S)l% 

\. 

STEP 5: Use Table A-I of Appendix A to find the critical value& such that 100(la)% of the normal distribution 
is below z,,. For example, ifa=0.05 then q,=1 ,645. 

For testing the hypothesis, 
z,,, or 2) H2 (a downward trend) - reject 8 if Z < 0 and the absolute value of Z is greater than L. 

STEP 6: (no trend) against 1) I-( (an upward trend) - reject if Z is greater than 

Box 4.3-6: An Example of Mann-Kendall Trend Test by Normal Approximation 

4 test for an upward trend witha=.05 will be based on the 11 weekly measurements shown below. 

STEP 1 : Using Box 4.3-2, a triangular table was used to construct the possible differences. A zero has been us 
if the difference is zero, a "+" sign if the difference is positive, and a 'I-" sign if the difference is negative. 

Week 
Data 

10 
10 
10 
5 

10 
20 
18 
17 
15 
24 

9 10 11 

0 0 -  0 + + + + + +  
0 -  0 + + + + + +  

0 -+ + + + + +  

1 2 3 4  5 6 7 8 
- I O l J l J 5 l J 2 0 1 8 1 7 1 5 2 4 1 5  

+ + + + + + +  
+ + + + + +  

+ 
-+ 
-+ 
+ o  

No. of 
+ Sians 

6 
6 
6 
7 
6 
1 
1 
1 
1 

No. of 
- Sians 

1 
1 
1 
0 
0 
4 
3 
2 
0 

0 
35 
- 1 

13 
- 

STEP 2: 

STEP 3: 

S = (sum of + signs) - (sum of - signs) = 35 - 13 = 22 

There are several observations tied at 10 and 15. Thus, the formula for tied values will be used. In this 
formula, g=2,4=4 for tied values of 10, and 4=2 for tied values of 15. 

V(S) = 1 [l l(l1-1)(2(11)+5) - [4(4-1)(2(4)+5) + 2(2-1)(2(2)+5)]] = 155.33 

22-1 - 20 
18 

STEP 4: Since S is positive: = - - 

STEP 5: 

STEP 6: 

- - = 1.605 s-1 - 
[V(S)]" (155.33)" 12-46 

From Table A - I  of Appendix A, &,s=l ,645. 

H, is the alternative of interest. Therefore, since 1.605 is not greater than 1.645,d-k not rejected. 
Therefore, there is not enough evidence to determine that there is an upward trend. 
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4.3.4.2 Multiple Observations per Time Period for One Sampling Location 

Often, more than one sample is collected for each time period. There are two ways to deal with 
multiple observations per time period. One method is to compute a summary statistic, such as the median, 
for each time period and to apply one of the Mann-Kendall trend tests of section 4.3.4.1 to the summary 
statistic. Therefore, instead of using the individual data points in the triangular table, the summary statistic 
would be used. Then the steps given in Box 4.3-3 and 4.3-5 could be applied to the summary statistics. 

An alternative approach is to consider all the multiple observations within a given time period as 
being essentially equal (i.e., tied) values within that period. The S statistic is computed as before with n 
being the total of all observations. The variance of the S statistic (previously calculated in step 2) is changed 
to: 

9n (n - 1 ) (n  -2) 

where g represents the number of tied groups, w represents the number of data points in the p Ih group, h is 
the number of time periods which contain multiple data, and u 

2n(n-1) 

is the sample size in the q Ih time period. 

The preceding variance formula assumes that the data are not correlated. If correlation within single 
time periods is suspected, it is preferable to use a summary statistic (e.g., the median) for each time period 
and to then apply either Box 4.3-3 or Box 4.3-5 to the summary statistics. 

4.3.4.3 Multiple Sampling Locations with Multiple Observations 

The preceding methods involve a single sampling location (station). However, environmental data 
often consist of sets of data collected at several sampling locations (see Box 4.3-7). For example, data are 
often systematically collected at several fixed sites on a lake or river, or within a region or basin. The data 
collection plan (or experimental design) must be systematic in the sense that approximately the same 
sampling times should be used at all locations. In this situation, it is desirable to express the results by an 
overall regional summary statement across all sampling locations. However, there must be consistency in 
behavioral characteristics across sites over time in order for a single summary statement to be valid across all 
sampling locations. A usehl plot to assess the consistency requirement is a single time plot (section 2.3.8.1) 
of the measurements from all stations where a different symbol is used to represent each station. 

If the stations exhibit approximately steady trends in the same direction (upward or downward), with 
comparable slopes, then a single summary statement across stations is valid and this implies two relevant sets 
of hypotheses should be investigated: 

Comparability of stations. &: Similar dynamics affect all K stations vs. H A: At least two stations 
exhibit different dynamics. 

Testing for overall monotonic trend. H,*: Contaminant levels do not change over time vs. 
HL: There is an increasing (or decreasing) trend consistently exhibited across all stations. 
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Therefore, the analyst must first test for homogeneity of stations, and then, if homogeneity is confirmed, test 
for an overall monotonic trend. 

Ideally, the stations in Box 4.3-7 should have equal numbers. However, the numbers of observations 
at the stations can differ slightly, because of isolated missing values, but the overall time periods spanned 
must be similar. This guidance recommends that for less than 3 time periods, an equal number of 
observations (a balanced design) is required. For 4 or more time periods, up to 1 missing value per sampling 
location may be tolerated. 

a. One Observation per Time Period. When only one measurement is taken for each time period 
for each station, a generalization of the Mann-Kendall statistic can be used to test the above hypotheses. This 
procedure is described in Box 4.3-8. \ 

b. Multiple Observations per Time Period. If multiple measurements are taken at some times and 

is computed for each 
station, then the previous approaches are still applicable. However, the variance of the statistic S 
calculated using the equation for calculating V(S) given in section 4.3.4.2. Note that S 
station, so n, w p, g, h, and uq are all station-specific. 

must be 

Box 4.3-7: Data for Multiple Times and Multiple Stations 

Let i = 1 ,2 ,  ..., n represent time, k = 1, 2, ..., K represent sampling locations, and$ 
represent the measurement at time i for location k. This data can be summarized in 
matrix form, as shown below. 

Stations 

XI2 . . .  
xzz . . .  

Time . . . .  

. . .  
n X,, X,, . . .  X,, 

S, S, . . .  

where S, = Mann-Kendall statistic for station k (see STEP 3, Box 4.3-3), 
V(Q = variance for S statistic for station k (see STEP 2, Box 4 . 3 4 ,  and 
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Box 4.3-8: Testing for Comparability of Stations and an Overall Monotonic Trend 

Let i = 1, 2, ..., n represent time, k = 1, 2, ..., K represent sampling locations, and&epresent the measurement 
at time i for location k. Leta represent the significance level for testing homogeneity an&* represent the 
significance level for testing for an overall trend. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

STEP 7: 

Calculate the Mann-Kendall statistic Sand its variance V(s) for each of the K stations using the 
methods of section 4.3.4.1, Box 4.3-5. 

For each of the K stations, calculate Zk = sk /m. 
K 

Calculate the average 2 = 2, / K. 
k- I 

K 
2 -2 2,’ - K Z . Calculate the homogeneity chi-square statistiqh = 

Using a chi-squared table (Table A-8 of Appendix A), find the critical value fd with (K-I) degrees 
of freedom at ana significance level. For example, for a significance level of 5% and 5 degrees of 
freedom, x’(~,  = 11.07, Le., 11.07 is the cut point which puts 5% of the probability in the upper tail of 
a chi-square variable with 5 degrees of freedom. 

If x‘, I X ’ ( ~ - ,  ), there are comparable dynamics across stations at significance lev&. Go to Step 7. 

If x’, > x ’ (~ - ,  the stations are not homogeneous (i.e., different dynamics at different stations) at the 
significance levela. Therefore, individuals*-level Mann-Kendall tests should be conducted at each 
station using the methods presented in section 4.3.4.1. 

Using a chi-squared table (Table A-8 of Appendix A), find the critical value fd with 1 degree of 
freedom at an a significance level. If 

k- 1 

then reject y* and conclude that there is a significant (upward or downward) monotonic trend 
across all stations at significance lev&*. The signs of the 
decreasing trends are present. If 

indicate whether increasing or 

there is not significant evidence at thex’ level of a monotonic trend across all stations. That is, the 
stations appear approximately stable over time. 

4.3.4.4 One Observation for One Station with Multiple Seasons 
I .  

Temporal data are often collected over extended periods o f  time. Within the time variable, data may 
exhibit periodic cycles, which are patterns in the data that repeat over time (e.g., the data may rise and fall 
regularly over the months in a year or the hours in a day). For example, temperature and humidity may 
change with the season or month, and may affect environmental measurements. (For more information on 
seasonal cycles, see section 2.3.8). In the following discussion, the term season represents one time point in 
the periodic cycle, such as a month within a year or an hour within a day. 
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If seasonal cycles are anticipated, then two approaches for testing for trends are the seasonal Kendall 
test and Sen’s test for trends. The seasonal Kendall test may be used for large sample sizes, and Sen‘s test for 
trends may be used for small sample sizes. If different seasons manifest similar slopes (rates of change) but 
possibly different intercepts, then the Mann-Kendall technique of section 4.3.4.3 is applicable, replacing time 
by year and replacing station by season. 

The seasonal Kendall test, which is an extension of the Mann-Kendall test, involves calculating the 
Mann-Kendall test statistic, S, and its variance separately for each “season” ( e g ,  month of the year, day of 
the week). The sum of the S’s and the sum of their variances are then used to form an overall test statistic 
that is assumed to be approximately normally distributed for larger size samples. 

For data at a single site, collected at multiple seasons within multiple years, the techniques‘of 
section 4.3.4.3 can be applied to test for homogeneity of time trends across seasons. The methodology 
follows Boxes 4.3-7 and 4.3-8 exactly except that “station” is replaced by “season” and the inferences refer 
to seasons. 

4.3.5 A Discussion on Tests for Trends 

This section discusses some hrther considerations for choosing among the many tests for trends. All 
of the nonparametric trend tests and estimates use ordinal time (ranks) rather than cardinal time (actual time 
values, such as month, day or hour) and this restricts the interpretation of measured trends. All of the Mann- 
Kendall (MK) Trend Tests presented are based on certain painvise differences in measurements at different 
time points. The only information about these differences that is used in the MK calculations is their signs 
(Le., whether they are positive or negative) and therefore are generalizations of the sign test. MK calculations 
are relatively easy and simply involve counting the number of cases in which X + j  exceeds X i  and the number 
of cases in which X i  exceeds Xi  +j .  Information about magnitudes of these differences is not used by MK 
methods and this can adversely affect the statistical power when only limited amounts of data are available. 

There are, however, nonparametric methods based on ranks that takes such magnitudes into account 
and still retains the benefit of robustness to outliers. These procedures can be thought of as replacing the data 
by their ranks and then conducting parametric analyses. These include the Wilcoxon rank sum test and its 
many generalizations. These methods are more resistant to outliers than parametric methods; a point can be 
no more extreme than the smallest or largest value. 

Rank-based methods, which make fuller use of the information in the data than MK methods, are not 
as robust with respect to outliers as the sign and MK tests. They are, however, more statistically powefil  
than the sign test and MK methods; the Wilcoxon test being a case in point. If the data are random samples 
from normal distributions with equal variances, then the sign test requires approximately 1.225 times as 
many observations as the Wilcoxon rank sum test to achieve a given power at a given significance level. This 
kind of tradeoff between power and robustness exemplifies the analyst’s evaluation process leading to the 
selection of the best statistical procedure for the current situation. Further statistical tests will be developed 
in future editions of this guidance. 

EPA QAIG-9 4.3 - I O  QA96 



4.4 OUTLIERS 

4.4.1 Background 

Outliers are measurements that are extremely large or small relative to the rest of the data and, 
therefore, are suspected of misrepresenting the population from which they were collected. Outliers may 
result from transcription errors, data-coding errors, or measurement system problems such as, instrument 
breakdown. However, outliers may also represent true extreme values of a distribution (for instance, hot 
spots) and indicate more variability in the population than was expected. Not removing true outliers and 
removing false outliers both lead to a distortion of estimates of population parameters. 

Statistical outlier tests give the analyst probabilistic evidence that an extreme value (potential outlier) 
does not “fit” with the distribution of the remainder of the data and is therefore a statistical outlier. These 
tests should only be used to identifi data points that require further investigation. The tests alone cannot 
determine whether a statistical outlier should be discarded or corrected within a data set; this decision should 
be based on judgmental or scientific grounds.. 

There are 5 steps involved in treating extreme values or outliers: 

1. Identify extreme values that may be potential outliers; 
2. Apply statistical test; 
3. Scientifically review statistical outliers and decide on their disposition; 
4. Conduct data analyses with and without statistical outliers; and 
5. Document the entire process. 

. .  

Potential outliers may be identified through the graphical representations of Chapter 2 (step 1 above). 
Graphs such as the box and whisker plot, ranked data plot, normal probability plot, and time plot can all be 
used to identify observations that are much larger or smaller than the rest of the data. If potential outliers are 
identified, the next step is to apply one of the statistical tests described in the following sections. Section 
4.4.2 provides recommendations on selecting a statistical test for outliers. 

If a data point is found to be an outlier, the analyst may either: 1) correct the data point; 2) discard 
the data point from analysis; or 3) use the data point in all analyses. This decision should be based on 
scientific reasoning in addition to the results of the statistical test. For instance, data points containing 
transcription errors should be corrected, whereas data points collected while an instrument was 
malfunctioning may be discarded. One should never discard an outlier based solely on a statistical test. 
Instead, the decision to discard an outlier should be based on some scientific or quality assurance basis. 
Discarding an outlier from a data set should be done with extreme caution, particularly for environmental data 
sets, which often contain legitimate extreme values. If an outlier is discarded from the data set, all statistical 
analysis of the data should be applied to both the full and truncated data set so that the effect of discarding 
observations may be assessed. If scientific reasoning does not explain the outlier, it should not be discarded 
from the data set. 

R 

If any data points are found to be statistical outliers through the use of a statistical test, this 
information will need to be documented along with the analysis of the data set, regardless of whether any data 
points are discarded. If no data points are discarded, document the identification of any “statisticalyy outliers 
by documenting the statistical test performed and the possible scientific reasons investigated. If any data 
points are discarded, document each data point, the statistical test performed, the scientific reason for 
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discarding each data point, and the effect on the analysis of deleting the data points. This information is 
critical for effective peer review. 

4.4.2 Selection of a Statistical Test 

There are several statistical tests for determining whether or not one or more observations are 
statistical outliers. Step by step directions for implementing some of these tests are described in sections 
4.4.3 through 4.4.6. Section 4.4.7 describes statistical tests for multivariate outliers. 

Sample Assumes 
Size Test Section Normality 

P/&wG 
n c 25 Extreme Value Test 4.4.3 Yes 

n 2 50 DiscordanceTest 4.4.4 Yes 

n 2 25 Rdsner’s Test 4.4.5 Yes 

n 2 50 Walsh’s Test 4.4.6 No 

Multiple Data- ., 
Outliers QUEST 

NoNes Yes 

No Yes 

Yes Yes 

Yes Yes 

If the data are normally distributed, this guidance recommends applying Rosner’s test (Box 4.4-5) 
when the sample size is greater than 25 and the Extreme Value test (Box 4.4-1) when the sample size is less 
than 25. If only one outlier is suspected, then the Discordance test (Box 4.4-3) may be substituted for either 
of these tests. If the data are not normally distributed, or if the data cannot be transformed so that the 
transformed data are normally distributed, then the analyst should either apply a nonparametric test (such as 
Walsh’s test in Box 4.4-7) or consult a statistician. 

4.4.3 Extreme Value Test (Dixon’s Test) 

Dixon’s Extreme Value test can be used to test for statistical outliers when the sample size is less 
than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data 
(case 1) and extreme values that are much larger than the rest of the data (case 2). This test assumes that the 
data without the suspected outlier are normally distributed; therefore, it is necessary to perform a test for 
normality on the data without the suspected outlier before applying this test. If the data are not normally 
distributed, either transform the data, apply a different test, or consult a statistician. Directions for the 
Extreme Value test are contained in Box 4.4-1; an example of this test is contained in Box 4.4-2. The 
Extreme Value test is contained in the DQA DataQUEST software package (QA/G-9D, 1996). 

This guidance recommends using this test when only one outlier is suspected in the data. If more 
than one outlier is suspected, the Extreme Value test may lead to masking where two or more outliers close in 
value “hide” one another. Therefore, if the analyst decides to use the Extreme Value test for multiple outliers, 
apply the test to the least extreme value first. 
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STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

Box 4.4-1 : Directions for the Extreme Value Test 

Let >cl ), X(*), . . . , X(") represent the data ordered from smallest to largest. Check that the data 
without the suspect outlier are normally distributed, using one of the methods of section 4.2. If 
normality fails, either transform the data or apply a different outlier test. 

SI,  is a Potential Outlier (case 1) Compute the test statistic C, where 

(Dixon's Test) 

If C exceeds the critical value from Table A-3 of Appendix A for the specified significance lewl  
X,, ) is an outlier and should be further investigated. 

is a Potential Outlier (case 2) Compute the test statistic C, where 

If C exceeds the critical value from Table A-3 of Appendix A for the specified significance lewl  
X(") is an outlier and should be further investigated. 

Box 4.4-2: An Example of the Extreme Value Test 
(Dixon's Test) 

The data in order of magnitude from smallest to largest are: 82.39, 86.62, 91.72, 98.37, 103.46, 104.93, 
105.52, 108.21, 113.23, and 150.55 ppm. Because the largest value (150.55) is much larger than the other 
values, it is suspected that this data point might be an outlier. 

STEP 1 : A normal probability plot of the data shows that there is no reason to suspect that the data (without 
the extreme value) are not normally distributed. The studentized range test (section 4.2.6) also 
shows that there is no reason to suspect that the data are not normally distributed. Therefore, the 
Extreme Value test may be used to determine if the largest data value is an outlier. 

3.1 - 3 n - I )  - 150.55 - 113.23 - 37.32 STEP4: C = - - - = 0.584 
150.55 - 86.62 63.93 3 n )  - 32) 

STEP 5: Since C = 0.584 > 0.477 (from Table A-3 of Appendix A with n=10), there is evidence that& is 
an outlier at a 5% significance level and should be further investigated. 
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4.4.4 Discordance Test 

The Discordance test can be used to test if one extreme value is an outlier. This test considers two 
cases: 1) where the extreme value (potential outlier) is the smallest value of the data set, and 2) where the 
extreme value (potential outlier) is the largest value of the data set. The Discordance test assumes that the 
data are normally distributed; therefore, it is necessary to perform a test for normality before applying this 
test. If the data are not normally distributed either transform the data, apply a different test, or consult a 
statistician. Note that the test assumes that the data without the outlier are normally distributed; therefore, 
the test for normality should be performed without the suspected outlier. Directions and an example of the 
Discordance test are contained in Box 4.4-3 and 4.4-4, respectively. Table A-4 of Appendix A contains 
critical values for this test for n 5 50. 

.\ 

Box 4.43: Directions for the Discordance Test 

STEP 1: Let >cl ), X,, ), . . . , X(") represent the data ordered from smallest to largest. Check that the data 
without the suspect outlier are normally distributed, using one of the methods of section 4.2. If 
normality fails, either transform the data or apply a different outlier test. 

STEP 2: Compute the sample mean,x (section 2.2.2), and the sample standard deviation, s (section 2.2.3). 
If the minimum value X,  ) is a suspected outlier, perform Steps 3 and 4. If the maximum value &, 
is a suspected outlier, perform Steps 5 and 6. 

STEP 3: 3, ) is a Potential Outlier (case 1) Compute the test statistic D = 

STEP 4: If D exceeds the critical value from Table A-4, & is an outlier and should be further investigated. 

STEP 5: IfX,,, is a Potential Outlier (case 2) Compute the test statistic D = 

2 - 3,) 
S 

- 
3 n )  - X  

S 

1 STEP 6: If D exceeds the critical value from Table A-4, &, is an outlier and should be further investigated. 

Box 4.44: An Example of the Discordance Test 

The ordered data are 82.39, 86.62,91.72, 98.37, 103.46, 104.93, 105.52, 108.21, 113.23, and 150.55 ppm. 
Because the largest value of this data set (150.55) is much larger than the rest, it may be an outlier. 

STEP 1 : A normal probability plot of the data shows that there is no reason to suspect that the data (without 
the extreme value) are not normally distributed. The studentized range test (section 4.2.6) also 
shows that there is no reason to suspect that the data are not normally distributed. Therefore, the 
Discordance test may be used to determine if the largest data value is an outlier. 

STEP 2: 51 = 104.5 ppm and s = 18.922 ppm. 
- 

Tn) - - - 150.55 - 104.50 = 2.43 
STEP5: D = 

S 18.92 

STEP 6: Since D = 2.43 > 2.1 76 (from Table A-4 of Appendix A with n = IO), there is evidence that& is 
an outlier at a 5% significance level and should be further investigated. 
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4.4.5 Rosner's Test 

A parametric test developed by Rosner can be used to detect up to 10 outliers for sample sizes of 25 
or more. This test assumes that the data are normally distributed; therefore, it is necessary to perform a test 
for normality before applying this test. If the data are not normally distributed either transform the data, 
apply a different test, or consult a statistician. Note that the test assumes that the data without the outlier are 
normally distributed; therefore, the test for normality may be performed without the suspected outlier. 
Directions for Rosner's test are contained in Box 4.4-5 and an example is contained in Box 4.4-6. This test is 
also contained in the DQA DataQUEST software package (QA/G-9D, 1996). 

Rosner's test is not as easy to apply as the preceding tests. To apply Rosner's test, first determine an 
upper limit ro on the number of outliers (r I lo), then order the r o  extreme values from most extreme to least 
extreme. Rosner's test statistic is then based on the sample mean and sample standard deviation computed 
without the r = ro  extreme values. If this test statistic is greater than the critical value given in Table A-5 of 
Appendix A, there are r outliers. Otherwise, the test is performed again without the r = r - 1 extreme values. 
This process is repeated until either Rosner's test statistic is greater than the critical value or r = 0. 

Box 4.44: Directions for Rosner's Test for Outliers 

STEP 1 : Let X,, X,, . . . , X, represent the ordered data points. By inspection, identify the maximum 
number of possible outliers, 6. Check that the data are normally distributed, using one of the 
methods of section 4.2. 

Compute the sample meany, and the sample standard deviation, s, f o a  the data. Label 
these valuesz(') and do), respectively. Determine the observation farthest froZ(') and label 
this observation f"'. Delete $')from the data and compute the sample mean, labeled?'), and 
the sample standard deviation, labeled k' ). Then determine the observation farthest from$') 
and label this observation f' ). Delete 9') and compute?') and s"). Continue this process 
until r, extreme values have been eliminated. 

In summary, after the above process the analyst should have 

STEP 2: 

from? ' ). (Note, the above formulas foZ(')and s") assume that the data have been 
renumbered afier each observation is deleted.) 

Iy ( r -U  - p - I ) [  
STEP 3: To test if there are 'I' outliers in the data, compute: Rr := and compare 

s ( r - I )  

R, to h, in Table A-5 of Appendix A. If 8 z &, conclude that there are r outliers. 

First, test if there are 6 outliers (compare R ). If not, test if there are 6- 1 outliers 

(compare Rrc,-l to hr0-,). If not, test if there are 6- 2 outliers, and continue, until either it is 

determined that there are a certain number of outliers or that there are no outliers at all. 

to h 
m-l '0-1 

~ 
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STEP 1: 

STEP 2: 

STEP 3: 

Box 4.4-6: An Example of Rosner's Test for Outliers 

Consider the following 32 data points (in ppm) listed in order from smallest to largest: 2.07, 40.55, 
84.15, 88.41,98.84, 100.54, 115.37, 121.19, 122.08, 125.84, 129.47, 131.90, 149.06, 163.89, 
166.77, 171.91, 178.23, 181.64, 185.47, 187.64, 193.73, 199.74, 209.43,213.29,223.14, 
225.12, 232.72, 233.21, 239.97, 251.12, 275.36, and 395.67. 

A normal probability plot of the data shows that there is no reason to suspect that the data 
(without the suspect outliers) are not normally distributed. In addition, this graph identified four 
potential outliers: 2.07,40.55,275.36, and 395.67. Therefore, Rosner's test will be applied to see 
if there are 4 or fewer (6 = 4) outliers. 

First the sample mean and sample standard deviation were computed for the entire data s&f) 
and s")). Using subtraction, it was found that 395.67 was the farthest data point fro6Ic", so 

= 395.67. Then 395.67 was deleted from the data and the sample mea#'), and the sample 
standard deviation, #I, were computed. Using subtraction, it was found that 2.07 was the farthest 
value fromSr"). This value was then dropped from the data and the process was repeated again 
on 40.55 to yieldK('), d2), and f2) and Z3), d3), and y'". These values are summarized below. 

i K( l )  v'" - -  
0 169.923 75.133 395.67 
1 162.640 63.872 2.07 
2 167.993 57.460 40.55 
3 172.387 53.099 275.36 

To apply Rosner's test, it is first necessary to test if there are 4 outliers by computing 

ly(,) - - - (275.36 - 172.3871 = 1.939 R4 = 
s (3) 53.099 

and comparing 
there are not 4 outliers in the data set. Therefore, it will next be tested if there are 3 outliers by 
computing 

to & in Table A-5 of Appendix A with n = 32. Since @= 1.939 I: & = 2.89, 

( ~ ( ~ 1  - F(2)l - - 140.55 - 167.9931 = 2.218 R, = 
s (2) 57.460 

and comparing R to A3 in Table A-5 with n = 32. Since 
outliers in the data set. Therefore, it will next be tested if there are 2 outliers by computing 

= 2.218 I: A3 = 2.91, there are not 3 

and comparing 
outliers in the data set. Therefore, it will next be tested if there is 1 outlier by computing 

to A2 in Table A-5 with n = 32. Since = 2.514 1: A3 = 2.92, there are not 2 

and comparing R, to A, in Table A-5 with n = 32. Since 6 = 3.005 > A,= 2.94, there is evidence 
at a 5% significance level that there is loutlier in the data set. Therefore, observation 355.67 is a 
statistical outlier and should be further investigated. 
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4.4.6 Walsh's Test 

A nonparametric test was developed by Walsh to detect multiple outliers in a data set. This test 
requires a large sample size: n > 220 for a significance level of a = 0.05, and n > 60 for a significance level of 
a = 0.10. However, since the test is a nonparametric test, it may be used whenever the data are not normally 
distributed. Directions for the test by Walsh for large sample sizes are given in Box 4.4-7. This test is also 
contained in the DQA DataQUEST software package (QA/G-9D, 1996). 

Box 4.4-7: Dikctions for Walsh's Test for Large Sample Sizes 

Let 5 ,  ), X(2), . . ~ , X(") represent the data ordered from smallest to largest. If M 60, do not apply this test. If 
60 c n 5 220, then a = 0.1 0. If n > 220, thena = 0.05. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

Identify the number of possible outliers, r. Note that r can equal 1 

1 + bd(c-b2)/(C-l) 
c - b 2 - 1  

Compute c = p, k = r + cy b 2  = l/a, and a = 

Round k to the smallest integer less than k. 

The r smallest points are outliers (with a% level of significance) if 

X ( r )  - (1 +ab(,- ,)  + ax(,) < 0 

' ( n + I  - r )  - (1 +a)x(,-,) + a x ( n + l - k )  > O  
The r largest points are outliers (with a% level of significance) if 

If both of the inequalities are true, then both small and large outliers are indicated. 

4.4.7 Multivariate Outliers 

Multivariate analysis, such as factor analysis and principal components analysis, involves the 
analysis of several variables'simultaneously. Outliers in multivariate analysis are then values that are 
extreme in relationship to either one or more variables. As the number of variables increases, identifying 
potential outliers using graphical representations becomes more difficult. In addition, special procedures are 
required to test for multivariate outliers. Details of these procedures are beyond the scope of this guidance. 
However, procedures for testing for multivariate outliers are contained in the software package Scout 
developed by the EPA's Environmental Monitoring Systems Laboratory in Las Vega, Nevada (EMSL-LV) 
and statistical textbooks on multivariate analysis. 
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4.5 TESTS FOR DISPERSIONS 

Many statistical tests make assumptions on the dispersion (as measured by variance) of data; this 
section considers some of the most commonly used statistical tests for variance assumptions. Section 4.5.1 
contains the methodology for constructing a confidence interval for a single variance estimate from a sample. 
Section 4.5.2 deals with the equality of two variances, a key assumption for the validity of a two-sample 
t-test. Section 4.5.3 describes Bartlett's test and section 4.5.4 describes Levene's test. These two tests verify 
the assumption that two or more variances are equal, a requirement for a standard two-sample t-test, for 
example. The analyst should be aware that many statistical tests only require the assumption of approximate 
equality and that many of these tests remain valid unless gross inequality in variances is determined. 

4.5.1 Confidence Intervals for a Single Variance 

This section discusses confidence intervals for a single variance or standard deviation for analysts 
interested in the precision of variance estimates. This information may be necessary for performing a 
sensitivity analysis of the statistical test or analysis method. The method described in Box 4.5-1 can be used 
to find a two-sided 100( 1- a)% confidence interval. The upper end point of a two-sided 100( 1- a)% 
confidence interval is a 100( 1 - a/2)% upper confidence limit, and the lower end point of a two-sided 
100( 1-a)% confidence interval is a 100(1-a/2)% lower confidence limit. For example, the upper end point 
of a 90% confidence interval is a 95% upper confidence limit and the lower end point is a 95% lower 
confidence limit. Since the standard deviation is the square root of the variance, a confidence interval for the 
variance can be converted to a confidence interval for the standard deviation by taking the square roots of the 
endpoints of the interval. This confidence interval assumes that the data constitute a random sample from a 
normally distributed population and can be highly sensitive to outliers and to departures from normality. 

4.5.2 The F-Test for the Equality of Two Variances 

An F-test may be used to test whether the true underlying variances of two populations are equal. 
Usually the F-test is employed as a preliminary test, before conducting the two-sample t-test for the equality 
of two means. The assumptions underlying the F-test are that the two samples are independent random 
samples from two underlying normal populations. The F-test for equality of variances is highly sensitive to 
departures from normality. Directions for implementing an F-test with an example are given in Box 4.5-2. 

4.5.3 Bartlett's Test for the Equality of Two or More Variances 

Bartlett's test is a means of testing whether two or more population variances of normal distributions 
are equal. In the case of only two variances, Bartlett's test is equivalent to the F-test. Often in practice 
unequal variances and non-normality occur together and Bartlett's test is itself sensitive to departures from 
normality. With long-tailed distributions, the test too often rejects equality (homogeneity) of the variances. 

Bartlett's test requires the calculation of the variance for each sample, then calculation of a statistic 
associated with the logarithm of these variances. This statistic is compared to tables and if it exceeds the 
tabulated value, the conclusion is that the variances differ as a complete set. It does not mean that one is 
significantly different from the others, nor that one or more are larger (smaller) than the rest. It simply 
implies the variances are unequal as a group. Directions for Bartlett's test are given in Box 4.5-3 and an 
example is given in Box 4.5-4. 
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Box 4.5-1 : Directions for Constructing Confidence Intervals and 
Confidence Limits for the Sample Variance and Standard Deviation 

with an Example 

Directions Let X,, X,, . . . , X, represent the n data points. 

STEP 1 : Calculate the sample variance 8 (section 2.2.3). 

STEP 2: For a 100(la)% two-sided confidence intervd use Table A-8 of Appendix A to find the cutoffs 
L and U such that L =$& and U = ?(, -on) with (n-1) degrees of freedom good. 

(n - l)s2 t0 (n - l)s2 
STEP 3: A 100(la)% confidence interval for the true underlying variance is: 

L Ux 

A 100(1a)% confidence interval for the true standard deviation is' J (fi-j)s2 to J (n- l )s2 
U 

Example: Ten samples were analyzed for lead: 46.4,46.1,45.8, 47,46.1,45.9,45.8,46.9, 45.2,46 ppb. 

' STEP 1 : Using section 2.2.3, d = 0.286. 

STEP 2: Using Table A-8 of Appendix A and Wof, L = dOsn = $.025 = 19.02 and U =d(,..05R) = d.g75 = 2.70. 

(10-1)0.286 to (10-1)0.286 or 0.14 to 0.95. STEP 3: A 95% confidence interval for the variance is: 
19.02 2.70 

A 95% confidence interval for the standard deviation i s m  = .374 to = .975: 

Box 4.5-2: Directions for Calculating an F-Test to Compare 
Two Variances with an Example 

Directions Let X,, X,, . . . , X,,, represent the m data points from population 1 and y, Y,, . . . , Y, represent the 
n data points from population 2. To perform an F-test, proceed as follows. 

STEP 1 : Calculate the sample variances 8' (for the X's) and s,,' (for the Y's ) (section 2.2.3). 

STEP 2: Calculate the variance ratios F, = +2/%2 and F, = +'/s;. Let F equal the larger of these two 
values. If F = F,,, then let k = m - 1 and q = n - 1. If F = 5, then let k = n -1 and q = m -  1. 

Using Table A-9 of Appendix A of the F distribution, find the cutoff U i&(k, 4). If F > U, 
conclude that the variances of the two populations are not the same. 

. 

STEP 3: 

Example: Manganese concentrations were collected from 2 wells. The data are Well X: 50, 73, 244, and 
202 ppm; and Well Y: 272,171,32,250, and 53 ppm. An F-test will be used to determine if the variances of 
the two wells are equal. 

STEP 1 : 

STEP 2: 

For Well X, s2 = 9076. For Well Y, $" = 12125. 

F, = s;/%' = 9076 I 12455 = 0.749. Fy = %'Is; = 12445 I 9076 = 1.334. Since, Fy > F,, 
F = F, = 1.334, k = 5 -1 = 4 and q = 4 - 1 = 3. 

Using Table A-9 of Appendix A of the F distribution with = 0.05, L = 
1.334 

STEP 3: 4, 3) = 15.1. Since 
15.1, there is no evidence that the variability of the two wells is different. 
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Box 4.5-3: Directions for Bartlett's Test 

Consider k groups with a sample size of p for each group. Let N represent the total number of samples, i.e., 
let N = n, + n, + . . . + h. For example, consider two wells where 4 samples have been taken from well 1 and 
3 samples have been taken from well 2. In this case, k = 2, p= 4, n2 = 3, and N = 4 + 3 = 7. 

STEP 1 : 

STEP 2: . 

For each of the k groups, calculate the sample variances,fs(section 2.2.3). 

2 1 2 
Compute the pooled variance across groups: sp = - (ni - 1)s; 

k 

(N-k)  i - l  

k 

STEP 3: ,Compute the test statistic: TS = (N  - k) ln(si). - 

where "In" stands for natural logarithms. 

Using a chi-squared table (Table A-8 of Appendix A), find the critical value fop' with (k-I) 
degrees of freedom at a predetermined significance level. For example, for a significance level of 
5% and 5 degrees of freedom,? = 11 .I. If the calculated value rS) is greater than the 
tabulated value, conclude that the variances are not equal at that significance level. 

(ni - 1 )  In(s') 
i-  1 

STEP 4: 

Box 4.54: An Example of Bartlett's Test 

Manganese concentrations were collected from 6 wells over a 4 month period. The data are shown in the followir 
table. Before analyzing the data, it is important to determine if the variances of the six wells are equal. Bartlett's te 
will be used to make this determination. 

STEP 1: For each of the 6 wells, the sample means and variances were calculated. These are shown in the 
bottom rows of the table below. 

Sampling Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

January 1 50 272 
February 1 73 171 68 
March 1 244 46 32 34 48 99 1 
April 1 202 77 53 3940 54 54 

n, (N=17) 4 2 4 2 2 3 
142.25 61.50 132 1987 51.00 371.00 

17.98 288348 

- 
x ,  
S,2 9076.37 480.49 12455 7628243 

1 k 
STEP2: S p  2 -  - - C(ni- l ) s f  = -[(4-1)9076 +... +(3-1)576696] = 751837.27 

(N-k) i-1 (17-6) 

STEP3: TS = (17-6) ln(751837.27) - [ (4-1)ln(9076) + ... + (3-1)ln(288348) ] = 43.16 

STEP 4: The critical2 value with 6 - 1 = 5 degrees of freedom at the 5% significance level is 11 .I (from Table P 
of Appendix A). Since 43.16 is larger than 11 . I ,  it is concluded that the six variances:@ . . , 2) are not 
homogeneous at the 5% significance level. 
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4.5.4 Levene's Test for the Equality of Two or More Variances 

Levene's test provides an alternative to Bartlett's test for homogeneity of variance (testing for 
differences among the dispersions of several groups). Levene's test is less sensitive to departures from 
normality than Bartlett's test and has greater power than Bartlett's for non-normal data. In addition, Levene's 
test has power nearly as great as Bartlett's test for normally distributed data. However, Levene's test is more 
difficult to apply than Bartlett's test since it involves applying an analysis of variance (ANOVA) to the 
absolute deviations from the group means. Directions and an example of Levene's test are contained in Box 
4.5-5 and Box 4.5-6, respectively. 

\ 

Box 4.5-5: Directions for Levene's Test 

Consider k groups with a sample size of For the ith group. Let N represent the total number of samples, i.e., let 
N = n, + n2 + . . . + nk. For example, consider two wells where 4 samples have been taken from well 1 and 3 
samples have been taken from well 2. In this case, k = 2, p= 4, n, = 3, and N = 4 + 3 = 7. 

STEP 1 : For each of the k groups, calculate the group meant (section 2.2.2), Le., calculate: 

STEP 2: Compute the absolute residuals zii = k, - 71 where Kj represents the $' value of the r group. 

For each of the k groups, calculate the meansrg of these residuals, Le., calculate: 

- k " r  k 
n ,z i .  1 

Also calculate the overall mean residual as = - zii = - 
N ; - I  j - 1  N i - l  

STEP 5: Using Table A-9 of Appendix A, find the critical value of the F-distribution with (k-I) numerator degrees 
of freedom, (N-k) denominator degrees of freedom, and a desired level of significanmfi. For example, 
if a = 0.05, the numerator degrees of freedom is 5, and the denominator degrees of freedom is 18, the 
using Table A-9, F = 2.77. I f f  is greater than F, reject the assumptions of equal variances. 
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, Box 4.5-6: An Example of Levene's Test 

Four months of data on arsenic concentration were collected from six wells at a Superfund site. This data set is 
shown in the table below. Before analyzing this data, it is important to determine if the variances of the six wells arc 
equal. Levene's test will be used to make this determination. 

STEP 1 : The group mean for each well i) is shown in the last row of the table below. 

Arsenic Concentration (ppm) 

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

1 22.90 2.00 2.0 7.84 24.90 0.34 
2 3.09 1.25 109.4 9.30 1.30 4.78 
3 35.70 7.80 4.5 25.90 0.75 2.85 
4 4.18 52.00 2.5 2.00 27.00 1.20 

- - - 
Group Means X ,=16.47 x ,=15.76 x,=29.6 x,=11.26 xp13.49 X 6=2.29 

STEP 2: To compute the absolute residuals Tin each well, the value 16.47 will be subtracted from Well 1 data, 
15.76 from Well 2 data, 29.6 from Well 3 data, 11.26 from Well 4 data, 13.49 from Well 5 data, and 2.2 
from Well 6 data. The resulting values are shown in the following table with the new well meanEJsnd 
the total mean? 

Residual Arsenic Concentration (ppm) 

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

1 6.43 13.76 27.6 3.42 11.41 1.95 
2 13.38 14.51 79.8 1.96 12.19 2.49 
3 19.23 7.96 25.1 14.64 12.74 0.56 
4 12.29 36.24 27.1 9.26 13.51 1.09 

- - - - - - 
Residual Means z,=12.83 z,=18.12 z,=39.9 z,=7.32 z,=12.46 z6=1 5 2  

Total Residual Mean>= (1/6)(12.83 + 18.12 + 39.9 + 7.32 + 12.46 + 1.52) = 15.36 

11 STEP 3: The sum of squares are: S%, = 6300.89, S L s  = 3522.90, and S G R  = 2777.99. 

sSw,q~J(k-l) - - 3522.946 - 1 )  = 4.56 
SS,,,,/(N-k) 2777.99/(24 -6) 

STEP4: f = 

STEP 5: Using Table A-9 of Appendix A, the F statistic for 5 and 18 degrees of freedom with = 0.05 is 2.77 
Since e4.56 exceeds F0,=2.77, the assumption of equal variances should be rejected. 
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4.6 TRANSFORMATIONS 

Most statistical tests and procedures contain assumptions about the data to which they will be 
applied. For example, some common assumptions are that the data are normally distributed; variance 
components of a statistical model are additive; two independent data sets have equal variance; and a data set 
has no trends over time or space. If the data do not satisfy such assumptions, then the results of a statistical 
procedure or test may be biased or incorrect. Fortunately, data that do not satisfy statistical assumptions may 
often be converted or transformed mathematically into a form that allows standard statistical tests to perform 
adequately. 

4.6.1 Types of Data Transformations 
\ 

Any mathematical function that is applied to every point in a data set is called a transformation. 
Some commonly used transformations include: 

Logarithmic (Log X o r  Ln X): This transformation may be used when the original measurement data 
follow a lognormal distribution or when the variance at each level of the data is proportional to the 
square of the mean of the data points at that level. For example, if the variance of data collected 
around 50 ppm is approximately 250, but the variance of data collected around 100 ppm is 
approximately 1000, then a logarithmic transformation may be useful. This situation is often 
characterized by having a constant coefficient of variation (ratio of standard deviation to mean) over 
all possible data values. 

The logarithmic base (for example, either natural or base 10) needs to be consistent throughout the 
analysis. If some of the original values are zero, it is customary to add a small quantity to make the 
data value non-zero as the logarithm of zero does not exist. The size of the small quantity depends 
on the magnitude of the non-zero data and the consequences of potentially erroneous inference from 
the resulting transformed data. As a working point, a value of one tenth the smallest non-zero value 
could be selected. It does not matter whether a natural (In) or base 10 (log) transformation is used 
because the two transformations are related by the expression ln(X) = 2.303 lo@). Directions for 
applying a logarithmic transformation with an example are given in Box 4.6-1. 

Square Root (a: This transformation may be used when dealing with small whole numbers, such 
as bacteriological counts, or the occurrence of rare events, such as violations of a standard over the 
course of a year. The underlying assumption is that the original data follow a Poisson-like 
distribution in which case the mean and variance of the data are equal. It should be noted that the 
square root transformation overcorrects when very small values and zeros appear in the original data. 
In these cases, is often used as a transformation. 

Inverse Sine (Arcsine X): This transformation may be used for binomial proportions based on 
count data to achieve stability in variance. The resulting transformed data are expressed in radians 
(angular degrees). Special tables must be used to transform the proportions into degrees. 

Box-Cox Transformations: This transformation is a complex power transformation that takes the 
original data and raises each data observation to the power lambda ( A). A logarithmic transformation 
is a special case of the Box-Cox transformation. The rationale is to find A such that the transformed 
data have the best possible additive model for the variance structure, the errors are normally 
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distributed, and the variance is as constant as possible over all possible concentration values. The 
Maximum Likelihood technique is used to find h such that the residual error from fitting the 
theorized model is minimized. In practice, the exact value of h is often rounded to a convenient value 
for ease in interpretation (for example, h = -1.1 would be rounded to -1 as it would then have the 
interpretation of a reciprocal transform). One of the drawbacks of the Box-Cox transformation is the 
difficulty in physically interpreting the transformed data. 

I 4.6.2 Reasons for Data Transformations 

By transforming the data, assumptions that are not satisfied in the original data can be satisfied by 
the transformed data. For instance, a right-skewed distribution can be transformed to be approximately 
Gaussian (normal) by using a logarithmic or square-root transformation. Then the normal-theory procedures 
can be applied to the transformed data. If data are lognormally distributed, then apply procedures to 
logarithms of the data. However, selecting the correct transformation may be difficult. If standard 
transformations do not apply, it is suggested that the data user consult a statistician. 

Another important use of transformations is in the interpretation of data collected under conditions 
leading to an Analysis of Variance (ANOVA). Some of the key assumptions needed for analysis (for 
example, additivity of variance components) may only be satisfied if the data are transformed suitably. The 
selection of a suitable transformation depends on the structure of the data collection design; however, the 
interpretation of the transformed data remains an issue. ’ 

While transformations are useful for dealing with data that do not satisfy statistical assumptions, 
they can also be used for various other purposes. For example, transformations are useful for consolidating 
data that may be spread out or that have several extreme values. In addition, transformations can be used to 
derive a linear relationship between two variables, so that linear regression analysis can be applied. They can 
also be used to efficiently estimate quantities such as the mean and variance of a lognormal distribution. 
Transformations may also make the analysis of data easier by changing the scale into one that is more 
familiar or easier to work with. 

a- .>+,.=o.. :I.IRC**,I,-&. Once the daki have been transforrried, all statistical analysismust -be”p’erformed onethe transformed 
e-.. data,.,No -. attemptshould be made to transform the data backto-the original,form,because thiscankad to 
,biased estimates:,.For example; estimating quantities such as means, variances, confidence limits, and 
regression coefficients in the transformed scale typically leads to biased estimates when transformed back 
into original scale. However, it may be difficult to understand or apply results of statistical analysis 
expressed in the transformed scale. Therefore, if the transformed data do not give noticeable benefits to the 
analysis, it is better to use the original data. There is no point in working with transformed data unless it adds 
value to the analysis. 
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Box 4.6-1 : Directions for Transforming Data and an Example 

Let X,, X,, . . . , X, represent the n data points. To apply a transformation, simply apply the transforming 
function to each data point. When a transformation is implemented to make the data satisfy some statistical 
assumption, it will need to be verified that the transformed data satisfy this assumption. 

Example: Transformina Loqnormal Data 

A logarithmic transformation is particularly useful for pollution data. Pollution data are often skewed, thus the 
log-transformed data will tend to be symmetric. Consider the data set shown below with 15 data points. The 
frequency plot of this data (below) shows that the data are possibly lognormally distributed. If any analysis 
performed with this data assumes normality, then the data may be logarithmically transformed to achieve 
normality. The transformed data are shown in column 2. A frequency plot of the transformed data,Jbelow) 
shows that the transformed data appear to be normally distributed. 

Observed Transformed Observed Transformed 
X - In(X) 
0.22 - -1.51 
3.48 - 
6.67 - 
2.53 - 
1.11 - 
0.33 - 
1.64 - 
1.37 - 

1.25 
1.90 
0.93 
0.10 
-1 .I 1 
0.50 
0.31 

L 
1 

X - In(X) 
0.47 - -0.76 
0.67 - -0.40 
0.75 - -0.29 
0.60 - -0.51 
0.99 - -0.01 
0.90 - -0.1 1 
0.26 - 11.35 

2 3 4 5 6 7 
' Observed Values 

1 

-3 -2 -1 0 1 2 3 4 
Transformed Values 
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4.7 VALUES BELOW DETECTION LIMITS 

Data generated from chemical analysis may fall below the detection limit (DL) of the analytical 
procedure. These measurement data are generally described as not detected, or nondetects, (rather than as 
zero or not present) and the appropriate limit of detection is usually reported. In cases where measurement 
data are described as not detected, the concentration of the chemical is unknown although it lies somewhere 
between zero and the detection limit. Data that includes both detected and non-detected results are called 
censored data in the statistical literature. 

There are a variety of ways to evaluate data that include values below the detection limit. However, 
there are no general procedures that are applicable in all cases. Some general guidelines are presented in 
Table 4.7-1. Although these guidelines are usually adequate, they should be implemented cautiously. 

Percentage of 
Nondetects 

< 15% 

15% - 50% 

Section 
~ 

4.7.1 

4.7.2 

Statistical Analysis Method 
_ _ _ _ _ _ _ _ ~  _ _ _ _ _ _ _ ~  

Replace nondetects with DL/2, 
DL, or a very small number. 

Trimmed mean, Cohen's 
adjustment, Winsorized mean 
and standard deviation. 

> 50% - 90% 4.7.3 Use tests for proportions 
(section 3.2.2) 

Table 4.7-1. Guidelines for Analyzing Data with Nondetects 

All of the suggested procedures for analyzing data with nondetects depend on the amount of data 
below the detection limit. For relatively small amounts below detection limit values, replacing the nondetects 
with a small number and proceeding with the usual analysis may be satisfactory. For moderate amounts of 
data below the detection limit, a more detailed adjustment is appropriate. In situations where relatively large 
amounts of data below the detection limit exist, one may need only to consider whether the chemical was 
detected as above some level or not. The interpretation of small, moderate, and large amounts of data below 
the DL is subjective. Table 4.7-1 provides percentages to assist the user in evaluating their particular 
situation. However, it should be recognized that these percentages are not hard and fast rules, but should be 
based on judgement. 

In addition to the percentage of samples below the detection limit, sample size influences which 
procedures should be used to evaluate the data. For example, the case where'l sample out of 4 is not detected 
should be treated differently from the case where 25 samples out of 100 are not detected. Therefore, this 
guidance suggests that the data analyst consult a statistician for the most appropriate way to evaluate data 
containing values below the detection level. 
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4.7.1 Less than 15% Nondetects - Substitution Methods 

If a small proportion of the observations are not detected, these may be replaced with a small 
number, usually the detection limit divided by 2 (DLD), and the usual analysis performed. As a guideline, if 
15% or fewer of the values are not detected, replace them with the method detection limit divided by two and 
proceed with the appropriate analysis using these modified values. If simple substitution of values below the 
detection limit is proposed when more than 15% of the values are reported as not detected, consider using 
nonparametric methods or a test of proportions to analyze the data. If a more accurate method is to be 
considered, see Cohen's Method (section 4.7.2.1). 

4.7.2 Between 15-50% Nondetects , 

4.7.2.1 Cohen's Method 

Cohen's method provides adjusted estimates of the sample mean and standard deviation that accounts 
for data below the detection level. The adjusted estimates are based on the statistical technique of maximum 
likelihood estimation of the mean and variance so that the fact that the nondetects are below the limit of 
detection but may not be zero is accounted for. The adjusted mean and standard deviation can then be used in 
the parametric tests described in Chapter 3 ( e g ,  the one sample t-test of section 3.2.1.1). However, if more 
than 50% of the observations are not detected, Cohen's method should not be used. In addition, this method 
requires that the data without the nondetects be normally distributed and the detection limit is always the 
same. Directions for Cohen's method are contained in Box 4.7-1; an example is given in Box 4.7-2. 

Box 4.7-1 : Directions for Cohen's Method 

Let X,, X,, . . . , X, represent the n data points with the first m values representing the data points above the 
detection limit (DL). Thus, there are (n-m) data points are below the DL. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

- 1 m 
Compute the sample mean?,, from the data above the detection limit: Xd = - X, m i-1 

Compute the sample variance 4 from the data above the detection limit: 
I \ -  

2 FX.2 - LIFxj '  

2 
(n -4 ' d  Compute h = - and y = - 

n (x, - D L ) ~  

Use h andy in Table A-10 of Appendix A to determing. For example, if h = 0.4 andy = 0.30, 
then I = 0.6713. If the exact value of h an@ do not appear in the table, use double linear 
interpolation (Box 4.7-3) to estimat6. 

Estimate the corrected sample meanF, and sample variance, d ,  to account for the data below 

the detection limit, as follows:X = Xd - A(,?d - DL) and s 2  = s,' + l(Td - DLY. 
- -  
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Box 4.7-2: An Example of Cohen's Method 

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of the 24 
values were below the detection level. The 24 values are 1850, 1760, 1450 (ND), 1710, 1575, 1475, 1780, 
1790,1780, 1450 (ND), 1790,1800, 1450 (ND), 1800,1840,1820,1860,1780,1760,1800,1900, 
1770, 1790, 1780 rng/L. Cohen's Method will be used to adjust the sample mean for use in a t-test to 

.determine if the mean is greater than 1600 mg/L. 

STEP 1: 

STEP 2: 

STEP 3: 

STEP 4: 

STEP 5: 

- 
The sample mean of the m = 21 values above the detection level isXd = 1771.9 

The sample variance of the 21 quantified values is$= 8593.69. 

h = (24 -21)/24 = 0.125 and y = 8593.69/(1771.9 - 1450)2 = 0.083 

Table A-IO of Appendix A was used for h = 0.125 an@ = 0.083 to find the value 06. Since the 
table does not contain these entries exactly, double linear interpolation was used to estimate 
i = 0.14986 (see Box 4.7-3). 

The corrected sample mean and standard deviation are then estimated as follows: 

7 = 1771.9 - 0.14986(1771.9-1450) = 1723.66 and 

s 2  = 8593.69 + 0.14986(1771.9-1450)2 = 24122.12 

Box 4.73: Double Linear Interpolation 

The details of the double linear interpolation are provided to assist in the use of Table A-I 0 of Appendix A. 
The desired value fo r i  corresponds toy = 0.083 and, h = 0.125 from Box 4.7-2, Step 3. The values from 
Table A-IO for interpolatation are: 

Y h = 0.10 
0.05 0.1 1431 

h = 0.15 
0.1 7935 

0.10 0.1 1804 0.18479 

There are 0.05 units between 0.10 and 0.15 on the h-scale and 0.025 units between 0.10 and 0.125. 
Therefore, the value of interest lies (0.025/0.05)100% = 50% of the distance along the interval between 0.10 
and 0.15. To linearly interpolate between tabulated values on the h axis f q =  0.05, the range between the 
values must be calculated, 0.17935 - 0.1 1431 = 0.06504; the value that is 50% of the distance along the 
range must be computed, 0.06504 x 0.50 = 0.03252; and then that value must be added to the lower point 
on the tabulated values, 0.11431 + 0.03252 = 0.14683. Similarly fay= 0.10, 0.18479 - 0.1 1804 = 0.06675, 
0.06675 x 0.50 = 0.033375, and 0.11804 + 0.033375 = 0.151415. 

On the y-axis there are 0.033 units between 0.05 and 0.083 and there are 0.05 units between 0.05 and 0.10. 
The value of interest (0.083) lies (0.033/0.05 x 100) = 66% of the distance along the interval between 0.05 
and 0.10, so 0.141415 - 0.14683 = 0.004585, 0.004585 * 0.66 = 0.0030261. Therefore, 

i = 0.14683 + 0.0030261 = 0.14986. 
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4.7.2.2 Trimmed Mean 

Trimming discards the data in the tails of a data set in order to develop an unbiased estimate of the 
population mean. For environmental data, nondetects usually occur in the left tail of the data so trimming the 
data can be used to adjust the data set to account for nondetects when estimating a mean. Developing a 
loop% trimmed mean involves trimming p% of the data in both the lower and the upper tail. Note that p 
must be between 0 and .5 since p represents the portion deleted in both the upper and the lower tail. After np 
of the largest values and np of the smallest values are trimmed, there are n( 1 -2p) data values remaining. 
Therefore, the proportion trimmed is dependent on the total sample size (n) since a reasonable amount of 
samples must remain for analysis. For approximately symmetric distributions, a 25% trimmed mean (the 
midmean) is a good estimator of the population mean. However, environmental data are often skewed (non- 
symmetric) and in these cases a 15% trimmed mean performance may be a good estimator of the p6pulation 
mean. It is also possible to trim the data only to replace the nondetects. For example, if 3% of the data are 
below the detection limit, a 3% trimmed mean could be used to estimate the population mean. Directions for 
developing a trimmed mean are contained in Box 4.7-4 and an example is given in Box 4.7-5. A trimmed 
variance is rarely calculated and is of limited use. 

Box 4.74: Directions for Developing a Trimmed Mean 

Let X,, X,, . . . , X,, represent the n data points. To develop a loop% trimmed mean (0 

STEP 1 : 

p e 0.5): 

Let t represent the integer part of the product np. For example, if p = .25 and n = 17, 
np = (.25)(17) = 4.25, so t = 4. 

Delete the t smallest values of the data set and the t largest values of the data set. 

Compute the arithmetic mean of the remaining n - 21 values: x = - 

This value is the estimate of the population mean. 

STEP 2: 

STEP 3: 
1 n-2r 

- 

4 n -2 t  ,-I 

Box 4.74: An Example of the Trimmed Mean 

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mglL and 3 of the 24 
values were below this limit. The 24 values listed in order from smallest to largest are: < 1450 (ND), 
(ND), 1450 (ND), 1475,1575,1710,1760,1760,1770,1780,1780,1780,1780,1790,1790,1790,1800, 
1800,1800,1820,1840,1850,1860,1900 mglL. A 15% trimmed mean will be used to develop an estimate 
of the population mean that accounts for the 3 nondetects. 

STEP 1: Since np = (24)(.15) = 3.6, t = 3. 

STEP 2: The 3 smallest values of the data set and the 3 largest values of the data set were deleted. The 
new data set is: 1475,1575,1710,1760,1760,1770,1780,1780,1780,1780,1790,1790, 
1790,1800,1800,1800,1820,1840 mglL. 

STEP 3: Compute the arithmetic mean of the remaining n-2t values: 

1450 

(1475 + ... + 1840) = 1755.56 1 

24 - (2x3) 

11 Therefore, the 15% trimmed mean is 1755.56 mglL, which is an estimate of the population mean. 
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4.7.2.3 Winsorized Mean and Standard Deviation 

Winsorizing replaces data in the tails of a data set .with the next most extreme data value. For 
environmental data, nondetects usually occur in the left tail of the data. Therefore, winsorizing can be used to 
adjust the data set to account for nondetects. The mean and standard deviation can then be computed on the 
new data set. Directions for winsorizing data (and revising the sample size) are contained in Box 4.7-6 and 
an example is given in Box 4.7-7. 

Box 4.7-6: Directions for Developing a Winsorized 
Mean and Standard Deviation 

Let X,, X,, . . . , X, represent the n data points and m represent the number of data points above the detection 
limit (DL), and hence n-m below the DL. 

STEP 1 : List the data in order from smallest to largest, including nondetects. Label these points,&, 
X,, ),. . ., X(") (so that 3, )  is the smallest, T 2 ,  is the second smallest, and >Fn, is the largest). 

STEP 2: Replace the n-m nondetects with &+ , and replace the n-m largest values with &-,,,,. 

STEP 3: Using the revised data set, compute the sample meani, and the sample standard deviation, s: 

' 

(242) - nx2 
i- I 

n-1 

s (n  - 1) 
(2m -n - 1) '  

STEP 4: The Wnsorized mean: is equal to:. The Wnsorized standard deviation iss, = 

Box 4.7-7: An Example of a Winsorized 
Mean and Standard Deviation 

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mglL and 3 of the 24 
values were below the detection level. The 24 values listed in order from smallest to largest are: < 1450 (ND), 
< 1450 (ND), c 1450 (ND), 1475,1575,1710,1760,1760,1770,1780,1780,1780,1780,1790,1790, 
1790,1800,1800,1800,1820,1840,1850,1860,1900 mglL. 

STEP 1: The data above are already listed from smallest to largest. There are n=24 samples, 21 above DL, 
and n-m=3 nondetects. 

STEP 2: The 3 nondetects were replaced with &, and the 3 largest values were replaced with &, ). The 
resulting data set is: 1475, 1475, 1475, 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 
1780,1790,1790,1790,1800,1800,1800,1820,1840,1840,1840,1840 mglL 

STEP 3: For the new data setE = 1731 mglL and s = 128.52 mglL. 

STEP 4: The Wnsorized meanFw = 1731 mglL. The Winsorized sample standard deviation is: 
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4.7.3 Greater than 50% Nondetects - Test of Proportions 

If more than 50% of the data are below the detection limit but at least 10% of the observations are 
quantified, tests of proportions may be used to test hypotheses using the data. Thus, if the parameter of 
interest is a mean, consider switching the parameter of interest to some percentile greater than the percent of , 
data below the detection limit. For example, if 67% of the data are below the DL, consider switching the 
parameter of interest to the 75 Ih percentile. Then the method described in 3.2.2 can be applied to test the 
hypothesis concerning the 75 Ih percentile. It is important to note that the tests of proportions may not be 
applicable for composite samples. In this case, the data analyst should consult a statistician before 
proceeding with analysis. 

If very few quantified values are found, a method based on the Poisson distribution may b i  used as 
an alternative approach. However, with a large proportion of nondetects in the data, the data analyst should 
consult with a statistician before proceeding with analysis. 
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CHAPTER 5 

STEP 5: DRAW CONCLUSIONS FROM THE DATA 

THE DATA QUALITY ASSESSMENT PROCESS 

Review DQOs and Sampling Design I 
Select the Statistical Test 

I r -  VerifytheAssumptions I 
I :  I 

I I I Draw Conclusions From the Data I 

~ 

\ 

DRAW CONCLUSIONS FROM THE DATA 

!3!.QQ= 

Conduct the hypothesis test and interpret the results 
in the context of the data user's objectives. 

Activities 

Perform the Statistical Hypothesis Test 
Draw Study Conclusions. . Evaluate Performance of the Sampling Design 

Tools 

Issues in hypothesis testing related tcunderstanding 
and communicating the test results 

Step 5: Draw Conclusions from the Data 

e Perform the calculations for the statistical hypothesis test. 
Perform the calculations and document them clearly. 
If anomalies or outliers are present in the data set, perform the calculations with and 
without the questionable data. 

If the null hypothesis is rejected, then draw the conclusions and document the analysis. 
If the null hypothesis is not rejected, verify whether the tolerable limits on false negative 
decision errors have been satisfied. If so, draw conclusions and document the analysis; if 
not, determine corrective actions, if any. 
Interpret the results of the test. 

Evaluate the statistical power of the design over the full range of parameter values; 
consult a statistician as necessary. 

e Evaluate the statistical test results and draw conclusions. 

Evaluate the performance of the sampling design if the design is to be used again. e 

'1 
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CHAPTER 5 
STEP 5: DRAW CONCLUSIONS FROM THE DATA 

5.1 OVERVIEW AND ACTIVITIES 

In this final step of the DQA Process, the analyst performs the statistical hypothesis test and draws 
conclusions that address the data user's objectives. This step represents the culmination of the planning, 
implementation, and assessment phases of the data operations. The data user's planning objectives will have 
been reviewed (or developed retrospectively) and the sampling design examined in Step 1. Reports on the 
implementation of the sampling scheme will have been reviewed and a preliminaj picture of the sampling 
results developed in Step 2. In light of the information gained in Step 2, the statistical test will have been 
selected in Step 3. To ensure that the chosen statistical methods are valid, the key underlying assumptions of 
the statistical test will have been verified in Step 4. Consequently, all of the activities conducted up to this 
point should ensure that the calculations performed on the data set and the conclusions drawn here in Step 5 
address the data user's needs in a scientifically defensible manner. This chapter describes the main activities 
that should be conducted during this step. The actual procedures for implementing some commonly used 
statistical tests are described in Step 3, Select the Statistical Test. 

5.1.1 Perform the Statistical Hypothesis Test 

The goal of this activity is to conduct the statistical hypothesis test. Step-by-step directions for 
several commonly used statistical tests are described in Chapter 3. The calculations for the test should be 
clearly documented and easily verifiable. In addition, the documentation of the results of the test should be 
understandable so that the results can be communicated effectively to those who may hold a stake in the 
resulting decision. If computer software is used to perform the calculations, ensure that the procedures are 
adequately documented, particularly if algorithms have been developed and coded specifically for the project. 

The analyst should always exercise best professional judgment when performing the calculations. 
For instance, if outliers or anomalies are present in the data set, the calculations should be performed both 
with and without the questionable data to see what effect they may have on the results. 

5.1.2 Draw Study Conclusions 

The goal of this activity is to translate the results of the statistical hypothesis test so that the data 
user may draw a conclusion from the data. The results of the statistical hypothesis test will be either: 

(a) reject the null hypothesis, in which case the analyst is concerned about a possible false positive 
decision error; or 

(b) fail to reject the null hypothesis, in which case the analyst is Concerned about a possible false 
negative decision error. 

In case (a), the data have provided the evidence needed to reject the null hypothesis, so the decision 
can be made with sufficient confidence and without further analysis. This is because the statistical test based 
on the classical hypothesis testing philosophy, which is the approach described in prior chapters, inherently 
controls the false positive decision error rate within the data user's tolerable limits, provided that the 
underlying assumptions of the test have been verified correctly. 
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In case (b), the data do not provide sufficient evidence to reject the null hypothesis, and the data must 
be analyzed further to determine whether the data user's tolerable limits on false negative decision errors have 
been satisfied. One of two possible conditions may prevail: 

( I ) ,  The data do not support rejecting the null hypothesis and the false negative decision error 
limits were satisfied. In this case, the conclusion is drawn in favor of the null hypothesis, 
since the probability of committing a false negative decision error is believed to be 
sufficiently small in the context of the current study (see section 5.2). 

(2) The data do not support rejecting the null hypothesis, and the false negative decision error 
limits were not satisfied. In this case, the statistical test was not powerful enough to satisfy 
the data user's performance criteria. The data user may choose to tolerate a highetfalse 
negative decision error rate than previously specified and draw the conclusion in favor of the 
null hypothesis, or instead take some form of corrective action, such as obtaining additional 
data before drawing a conclusion and making a decision. 

When the test fails to reject the null hypothesis, the most thorough procedure for verifying whether the false 
negative decision error limits have been satisfied is to compute the estimated power of the statistical test, 
using the variability observed in the data. Computing the power of the statistical test across the full range of 
possible parameter values can be complicated and usually requires specialized software. Power calculations 
are also necessary for evaluating the performance of a sampling design. Thus, power calculations will be 
discussed further in section 5.1.3. 

A simpler method can be used for checking the performance of the statistical test. Using an estimate 
of variance obtained from the actual data or upper 95% confidence limit on variance, the sample size required 
to satisfy the data user's objectives can be calculated retrospectively. If this theoretical sample size is less 
than or equal to the number of samples actually taken, then the test is sufficiently powerful. If the required 
number of samples is greater than the number actually collected, then additional samples would be required to 
satisfy the data user's performance criteria for the statistical test. An example of this method is contained in 
Box 5.1-1. The equations required to perform these calculations have been provided in the detailed step-by- 
step instructions for each hypothesis test procedure in Chapter 3. 

5.1.3 Evaluate Performance of the Sampling Design 

If the sampling design is to be used again, either in a later phase of the current study or in a similar 
study, the analyst will be interested in evaluating the overall performance of the design. To evaluate the 
sampling design, the analyst performs a statistical power analysis that describes the estimated power of the 
statistical test over the range of possible parameter values. The power of a statistical test is the probability of 
rejecting the null hypothesis when the null hypothesis is false. The estimated power is computed for all 
parameter values under the alternative hypothesis to create a power curve. A power analysis helps the analyst 
evaluate the.adequacy of the sampling design when the true parameter value.lies in the vicinity of the action 
level (which may not have been the outcome of the current study). In this manner, the analyst may determine 
how well a statistical test performed and compare this performance with that of other tests. 

The calculations required to perform a power analysis can be relatively complicated, depending on 
the complexity of the sampling design and statistical test selected. Box 5.1.2 illustrates power calculations 
for a test of a single proportion, which is one of the simpler cases. A further discussion of power curves 
(performance curves) is contained in the Guidance for Data Quality Objectives (EPA QNG-4, 1994). 
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Box 5.1-1: Checking Adequacy of Sample Size for a One- 
Sample t-Test for Simple Random Sampling 

In Box 3.3-2, the one-sample t-test was used to test the hypothesis &lp 5 95 ppm vs. HA: p > 95 pprn. DQOs 
specified that the test should limit the false positive error rate to 5% and the false negative error rate to 20% if the 
true mean were 105 ppm. A random sample of size n = 9 had sample meaa = 99.38 ppm and standard deviation 
s = 10.41 ppm. The null hypothesis was not rejected. Assuming that the true value of the standard deviation was 
equal to its sample estimate 10.41 ppm, it was found that a sample size of 9 would be required, which validated th 
sample size of 9 which had actually been used. 

The distribution of the sample standard deviation is skewed with a long right tail. It follows that the chances are 
greater than 50% that the sample standard deviation will underestimate the true standard deviation. In such a cas 
it makes sense to build in some conservatism, for example, by using an upper 90% confidence limit fonn step 5 of 
Box 3.3-1. Using Boxes 4.6-1 and 4.6-2 and n - 1 = 8 degrees of freedom, it is found that U = 3.49, so that an 
upper 90% confidence limit for the true standard deviation is 

= 10.41 = 15.76 

Using this value for s in Step 5 of Box 3.3-1 or Box 3.3-2 leads to the sample size estimate of 17. Hence, a samplc 
size of at least 17 should be used to be 90% sure of achieving the DQOs. Since it is generally desirable to avoid t 
need for additional sampling, it is advisable to conservatively estimate sample size in the first place. In cases wher 
DQOs depend on a variance estimate, this conservatism is achieved by intentionally overestimating the variance. 

Box 5.1-2: Example of Power Calculations for the OneSample Test of a Single Proportion 

This box illustrates power calculations for the test do: P 2 .20 vs. H,,: P < .20, with a false positive error rate of 5% 
when P=.20presented in Boxes 3.3-9 and 3.3-10. The power of the test will be calculated assuming, P .I 5 and 
before any data are available. Since npand n(1-PI) both exceed 4, the sample size is large enough for the normal 
approximation, and the test can be carried out as in steps 3 and 4 of Box 3.3-9. 

STEP 1: 

STEP 2: 

STEP 3: 

Determine the general conditions for rejection of the null hypothesis. In this case, the null hypothesis is 
rejected if the sample proportion is sufficiently smaller than J? (Clearly, a sample proportion above Ej 
cannot cast doubt on fl.) By steps 3 and 4 of Box 3.3-9 and 3.3-10, Uis rejected if 

p + Sin -Po 
< +/w 

Here p is the sample proportion, Q = 1 - Po, n is the sample size, and 
100(la)% of the standard normal distribution is below &,. This inequality is true if 

is the critical value such that 

p + .5/n < p0 - z,-~,/' 

Determine the specific conditions for rejection of the null hypothesis iflF(=l-Ql) is the true value of the 
proportion P. The same operations as are used in step 3 of Box 3.3-9 are performed on both sides of 
the above inequality. However, is replaced by 
These operations make the normal approximation applicable. Hence, rejection occurs if 

since it is assumed that S is the true proportion. 

)I85 

Find the probability of rejection if F: is the true proportion. By the same reasoning that led to the test in 
steps 3 and 4 of Boxes 3.3-9 and 3.3-1 0, the quantity on the left-hand side of the above inequality is a 
standard normal variable. Hence the power at B= . I5  (Le., the probability of rejection of uwhen . I5  is 
the true proportion) is the probability that a standard normal variable is less than -0.55. In this case, the 
probability is approximately 0.3 (using the last line from Table 1 of Appendix A) which is fairly small. 
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5.2 INTERPRETING AND COMMUNICATING THE TEST RESULTS 

Sometimes difficulties may arise in interpreting or explaining the results of a statistical test. One 
reason for such difficulties may stem from inconsistencies in terminology; another may be due to a lack of 
understanding of some of the basic notions underlying hypothesis tests. As an example, in explaining the 
results to a data user, an analyst may use different terminology than that appearing in this guidance. For 
instance, rather than saying that the null hypothesis was or was not rejected, analysts may report the result of 
a test by saying that their computer output shows a p-value of 0.12. What does this mean? Similar problems 
of interpretation may occur when the data user attempts to understand the practical significance of the test 
results or to explain the test results to others. The following paragraphs touch on some of the philosophical 
issues related to hypothesis testing which may help in understanding and communicating the test results. 

\ 

5.2.1 Interpretation of p-Values 

The classical approach for performing hypothesis tests is to prespecify the significance level of the 
test, i.e., the Type I decision error rate a. This rate is used to define the decision rule associated with the 
hypothesis test. For instance, in testing whether the population mean p exceeds a threshold level (e.g., 100 
ppm), the test statistic may depend on X, an estimate of p. Obtaining an estimate X that is greater than 100 
ppm may occur simply by chance even if the true mean p is less than or equal to 100; however, if X is “much 
larger” than 100 ppm, then there is only a small chance that the null hypothesis H 
Hence the decision rule might take the form “reject H if X exceeds 100 + C”, where C is a positive quantity 
that depends on a (and on the variability of X). If this condition is met, then the result of the statistical test is 
reported as “reject H,,”; otherwise, the result is reported as “do not reject H o.” (See Box 3.3-2 for an example 
of a t-test.) 

(p r; 100 ppm) is true. 

An alternative way of reporting the result of a statistical test is to report its p-value, which is defined 
as the probability, assuming the null hypothesis to be true, of observing a test result at least as extreme as 
that found in the sample. Many statistical software packages report p-values, rather than adopting the 
classical approach of using a prespecified Type I error rate. In the above example, for instance, the p-value 
would be the probability of observing a sample mean as large as X (or larger) if in fact the true mean was 
equal to 100 ppm. Obviously, in making a decision based on the p-value, one should reject H when p is 
small and not reject it if p is large. Thus the relationship between p-values and the classical hypothesis 
testing approach is that one rejects H if the p-value associated with the test result is less than a. If the data 
user had chosen the Type I error rate as 0.05 apriori and the analyst reported a p-value of 0.12, then the data 
user would report the result as “do not reject the null hypothesis;” if the p-value had been reported as 0.03, 
then that person would report the result as “reject the null hypothesis.” An advantage of reporting p-values is 
that they provide a measure of the strength of evidence for or against the null hypothesis, which allows data 
users to establish their own Type I error rates. The significance level can be interpreted as that p-value ( a) 
that divides “do not reject H 0)’ from “reject Ho.” 

5.2.2 “Accepting” vs. “Failing to Reject” the Null Hypothesis 

As noted in the paragraphs above, the classical approach to hypothesis testing results in one of two 
conclusions: “reject H o” (called a significant result) or “do not reject H 0)’ (a nonsignificant result). In the 
latter case one.might be tempted to equate “do not reject H 0)’ with “accept Ho.” This terminology is not 
recommended, however, because of the philosophy underlying the classical testing procedure. This 
philosophy places the burden of proof on the alternative hypothesis, that is, the null hypothesis is rejected 
only if the evidence furnished by the data convinces us that the alternative hypothesis is the more likely state 
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of nature. If a nonsignificant result is obtained, it provides evidence that the null hypothesis could 
sufficiently account for the observed data, but it does not imply that the hypothesis is the only hypothesis that 
could be supported by the data. In other words, a highly nonsignificant result (e.g., a p-value of 0.80) may 
indicate that the null hypothesis provides a reasonable model for explaining the data, but it does not 
necessarily imply that the null hypothesis is true. It may, for example, simply indicate that the sample size 
was not large enough to establish convincingly that the alternative hypothesis was more likely. When the 
phrase “accept H i ’  is encountered, it must be considered as “accepted with the preceding caveats.” 

5.2.3 Statistical Significance vs. Practical Significance 

There is an important distinction between these two concepts. Statistical significance simply refers 
to the result of the hypothesis test: Was the null hypothesis rejected? The likelihood of achieving a 
statistically significant result depends on the true value of the population parameter being tested (for 
example, p), how much that value deviates from the value hypothesized under the null hypothesis (for 
example, po), and on the sample size. This dependence on (p - p o) is depicted by the power curve associated 
with the test (section 5.1.3). A steep power curve can be achieved by using a large sample size; this means 
that there will be a high likelihood of detecting even a small difference. On the other hand, if small sample 
sizes are used, the power curve will be less steep, meaning that only a very large difference between p and p 
will be detectable with high probability. Hence, suppose one obtains a statistically significant result but has 
no knowledge of the power of the test. Then it is possible, in the case of the steep power curve, that one may 
be declaring significance (claiming p > p o, for example) when the actual difference, from a practical 
standpoint, may be inconsequential. Or, in the case of the slowly increasing power curve, one may not find a 
significant result even though a “large” difference between p and p exists. Neither of these situations is 
desirable: in the former case, there has been an excess of resources expended, whereas in the latter case, a 
Type I1 error is likely and has occurred. 

But how large a difference between the parameter and the null value is of real importance? This 
relates to the concept of practical significance. Ideally, this question is asked and answered as part of the 
DQO process during the planning phase of the study. Knowing the magnitude of the difference that is 
regarded as being of practical significance is important during the design stage because this allows one, to the 
extent that prior information permits, to determine a sampling plan of type and size that will make the 
magnitude of that difference commensurate with a difference that can be detected with high probability. 
From a purely statistical design perspective, this can be considered to be main purpose of the DQO process. 
With such planning, the likelihood of encountering either of the undesirable situations mentioned in the prior 
paragraph can be reduced. Box 5.2-1 contains an example of a statistically significant but fairly 
inconsequential difference. 

5.2.4 Impact of Bias on Test Results 

Bias is defined as the difference between the expected value of a statistic and a population parameter. 
It is relevant when the statistic of interest (e.g., a sample average X) is to be used as an estimate of the 
parameter ( e g ,  the population mean p). For example, the population parameter of interest may be the 
average concentration of dioxin within the given bounds of a hazardous waste site, and the statistic might be 
the sample average as obtained from a random sample of points within those bounds. The expected value of 
a statistic can be interpreted as supposing one repeatedly implemented the particular sampling design a very 
large number of times and calculated the statistic of interest in each case. The average of the statistic’s 
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Box 5.2-1 : Example of a Comparison of Two Variances 
which is Statistically but not Practically Significant 

The quality control (QC) program associated with a measurement system provides important information on 
performance and also yields data which should be taken into account in some statistical analyses. The QC pro< 
should include QC check samples, Le., samples of known composition and concentration which are run at regul 
frequencies. The term precisionrefers to the consistency of a measurement method in repeated applications unc 
fixed conditions. Precision is usually equated with a standard deviation. For many purposes, the appropriate 
standard deviation is one which results from applying the system to the same sample over a long period of time. 

This example concerns two methods for measuring ozone in ambient air, an approved method and a new 
candidate method. Both methods are used once per week on a weekly basis for three months. Based on 13 
analyses with each method of the mid-range QC check sample at 100 ppb, the null hypothesis of the e.quality of 
two variances will be tested with a false positive error rate of 5% or less. (If the variances are equal, then the 
standard deviations are equal.) Method 1 had a sample mean of 80 ppb and a standard deviation Of 4 ppb. 
Method 2 had a mean of 90 ppb and a standard deviation of 8 ppb. The Shapiro-Wilks test did not reject the 
assumption of normality for either method. Applying the F-test of Box 4.5-2, the F ratio i&12 = 2. Using 12 
degrees of freedom for both the numerator and denominator, the F ratio must exceed 3.28 in order to reject the 
hypothesis of equal variances (Table A-9 of Appendix A). Since 4 > 3.28, the hypothesis of equal variances is 
rejected, and it is concluded that method 1 is significantly more precise than method 2. 

In an industrialized urban environment, the true ozone levels at a fixed location and time of day are known to var 
over a period of months with a coefficient of variation of at least 100%. This means that the ratio of the standard 
deviation (SD) to the mean at a given location is at least 1. For a mean of 100 ppb, the standard deviation over 1 
for true ozone values at the location would be at least 100 ppb. Relative to this degree of variability, a difference 
between measurement error standard deviations of 4 or 8 ppb is negligible. The overall variance, incorporating 
true process variability and measurement error, is obtained by adding the individual variances. For instance, if 
measurement error standard deviation is 8 ppb, then the total variance is (100 ppb)(100 ppb) + (8 ppb)(8 ppb). 
Taking the square root of the variance gives a corresponding total standard deviation of 100.32 ppb. For a 
measurement error standard deviation of 4 ppb, the total standard deviation would be 100.08 ppb. From a prac 
standpoint, the difference in precision between the two methods is insignificant for the given application, despite 
finding that there is a statistically significant difference between the variances of the two methods. 

values would then be regarded as its expected value. Let E denote the expected value of X and denote the 
relationship between the expected value and the parameter, p, as E = p + b where b is the bias. For instance, 
if the bias occurred due to incomplete recovery of an analyte (and no adjustment is made), then 
b = (R-lOO)p/lOO, where R denotes the percent recovery. Bias may also occur for other reasons, such as lack 
of coverage of the entire target population ( e g ,  if only the drums within a storage site that are easily 
accessible are eligible for inclusion in the sample, then inferences to the entire group of drums may be 
biased). Moreover, in cases of incomplete coverage, the magnitude and direction of the bias may be 
unknown. An example involving comparison of the biases of two measurement methods is contained in 
BOX 5.2-2. 

In the context of hypothesis testing, the impact of bias can be quite severe in some circumstances. 
This can be illustrated by comparing the power curve of a test when bias is not present with a power curve for 
the same test when bias is present. The basic influence of bias is to shift the former “no bias” curve to the 
right or left, depending on the direction of the bias. If the bias is constant, then the second curve will be an 
exact translation of the former curve; if not, there will be a change in the shape of the second curve in addition 
to the translation. If the existence of the bias is unknown, then the former power curve will be regarded as the 
curve that determines the properties of the test when in fact the second curve will be the one that actually 
represents the test’s power. For example, in Figure 5.2-1 when the true value of the parameter is 120, the “no 
bias” power is 0.72 but the true power (the biased power) is only 0.4, a substantial difference. 
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Box 5.2-2: Example of a Comparison of Two Biases 

This example is a continuation of the ozone measurement comparison described in Box 5.2-1. &tand s, denote 
the sample mean and standard deviation of measurement method 1 applied to the QC check sample, and I&nd 
s, denote the sample mean and standard deviation of method 2. Thea = 80 ppb, s, = 4 ppb, 7 = 90 ppb and s, = 
8 ppb. The estimated biases a r z  - T = 80 - 100 = -20 ppb for method 1, an& - T = 90-1 00 = 10 ppb for method 
2, since 100 ppb is the true valuer. That is, method 1 seems to underestimate by 20 ppb, and method 2 seems to 
underestimate by 10 ppb. Let c( and ~ 1 2  be the underlying mean concentrations for measurement methods 1 and 2 
applied to the QC check sample. These means correspond to the average results which would obtain by applying 
each method a large number of times to the QC check sample, over a long period of time. 

A two-sample t-test (Boxes 3.3-1 and 3.3-3) can be used to test for a significant difference between these two 
biases. In this case, a two-tailed test of the null hypothesis p, - p2 = 0 against the alternative u: p, - p2 # 0 is 
appropriate, because there is n w  prioion' reason (in advance of data collection) to suspect that one measurement 
method is superior to the other. (In general, hypotheses should not be tailored to data.) Note that the difference 
between the two biases is the same as the difference (p- p2) between the two underlying means of the 
measurement methods. The test will be done to limit the false positive error rate to 5% if the two means are equal. 

STEP 1 : 

STEP 2: 

X = 80 ppb, s, = 4 ppb,v = 90 ppb, s, = 8 ppb. 

From Box 5.2-1, it is known that the methods have significantly different variances, so that 
Sattherthwaite's t-test should be used. Therefore, 

S N E -  - J -27-  - + - -  JC - + - = 2.48 
m n  13 13 

STEP3: f = 

Rounding down to the nearest integer gives f = 17. For a two-tailed test, the critical value is 
t ,& = f.975 = 2.1 10, from Table A-I of Appendix A. 

STEP 5: For a two-tailed test, compare1 t i  with t,& = 2.1 1. Since 4.032 > 2.1 1, reject the null hypothesis and 
conclude that there is a significant difference between the two method biases, in favor of method 2. 

This box illustrates a situation involving two measurement methods where one method is more precise, but also 
more biased, than the other. If no adjustment for bias is made, then for many purposes, the less biased, more 
variable method is preferable. However, proper bias adjustment can make both methods unbiased, so that the 
more precise method becomes the preferred method. Such adjustments can be based on QC check sample 
results, if the QC check samples are regarded as representative of environmental samples involving sufficiently 
similar analytes and matrices. 
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Figure 5.2-1. Illustration of Unbiased versus Biased Power Curves 

Since bias is not impacted by changing the sample size, while the precision of estimates and the 
power of tests increases with sample size, the relative importance of bias becomes more pronounced when the 
sample size increases (i.e., when one makes the power curve steeper). Similarly, if the same magnitude of 
bias exists for two different sites, then the impact on testing errors will be more severe for'the site having the 
smaller inherent variability in the characteristic of interest (i.e., when bias represents a larger portion of total 
variability). 

To minimize the effects of bias: identify and document sources of potential bias; adopt measurement 
procedures (including specimen collection, handling, and analysis procedures) that minimize the potential for 
bias; make a concerted effort to quantify bias whenever possible; and make appropriate compensation for 
bias when possible. 

5.2.5 Quantity vs. Quality of Data 

The above conclusions imply that, ifcompensation for bias cannot be made and ifstatistically- 
based decisions are to be made, then there will be situations in which serious consideration should be given 
to using an imprecise (and perhaps relatively inexpensive) chemical method having negligible bias as 
compared to using a very precise method that has even a moderate degree of bias. The tradeoff favoring the 
imprecise method is especially relevant when the inherent Variability in the population is very large relative to 
the random measurement error. 

For example, suppose a mean concentration for a given spatial area (site) is of interest and that the 
coefficient of variation (CV) characterizing the site's variability is 100%. Let method A denote an imprecise 
method, with measurement-error CV of 4O%, and let method B denote a highly precise method, with 
measurement-error CV of 5%. The overall variability, or total variability, can essentially be regarded as the 
sum of the spatial variability and the measurement variability. These are obtained from the individual CVs in 
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the form of variances. As CV equals standard deviation divided by mean, it follows that the site standard 
deviation is then the CV times the mean. Thus, for the site, the variance is 1 .OO ’ x mean’; for method A, the 
variance is 0.40’ x mean’; and for method B, the variance is 0.05 ’ x mean’. The overall variability when 
using method A is then (1  .OO ’ x mean’) + (0.40’ x mean’) = 1.16 x mean’, and when using method B, the 
variance is (1 .002 x mean’) f (0.05’ x mean’) = 1.0025 mean’. It follows that the overall CV when using 
each method is then (1.077 x mean) / mean = 107.7% for method A, and (1.001 x mean) / mean = 100.1 % 
for method B. 

Now consider a sample of 25 specimens from the site. The precision of the sample mean can then be 
characterized by the relative standard error (RSE) of the mean (which for the simple random sample situation 
is simply the overall CV divided by the square root of the sample size). For Method A, RSE = 21.54%; for 
method B, RSE = 20.02%. Now suppose that the imprecise method (Method A) is unbiased, while the 
precise method (Method B) has a 10% bias (e&, an analyte percent recovery of 90%). An overall measure of 
error that reflects how well the sample mean estimates’the site mean is the relative root mean squared error 
(RRMSE): 

RRMSE = JM 
where RB denotes the relative bias (RB = 0 for Method A since it is unbiased and RB = *IO% for Method B 
since it is biased) and RSE is as defined above. The overall error in the estimation of the population mean 
(the W S E )  would then be 21.54% for Method A and 22.38% for Method B. If the relative bias for 
Method B was 15% rather than IO%, then the RRMSE for Method A would be 2 1.54% and the RRMSE for 
Method B would be 25.02%, so the method difference is even more pronounced. While the above illustration 
is portrayed in terms of estimation of a mean based on a simple random sample, the basic concepts apply 
more generally. , 

This example serves to illustrate that a method that may be considered preferable fiom a chemical 
point of view (e.g., 85 or 90% recovery, 5% relative standard deviation [RSD]) may not perform as well in a 
statistical application as a method with less bias and greater imprecision (e.g., zero bias, 40% RSD), 
especially when the inherent site variability is large relative to the measurement-error RSD. 

5.2.6 “Proof of Safety” vs. “Proof of Hazard” 

Because of the basic hypothesis testing philosophy, the null hypothesis is generally specified in terms 
of the status quo (eg,  no change or action will take place if null hypothesis is not rejected). Also, since the 
classical approach exercises direct control over the Type I error rate, this rate is generally associated with the 
error of most concern (for further discussion of this point, see section 1.2). One difficulty, therefore, may be 
obtaining a consensus on which error should be of most concern. It is not unlikely that the Agency‘s 
viewpoint in this regard will differ from the viewpoint of the regulated party. In using this philosophy, the 
Agency‘s ideal approach is not only to set up the direction of the hypothesis in such a way that controlling the 
Type I error protects the health and environment but also to set it up in a way that encourages quality (high 
precision and accuracy) and minimizes expenditure of resources in situations where decisions are relatively 
“easy” (e.g., all observations are far from the threshold level of interest). 

In some cases, how one formulates the hypothesis testing problem can lead to very different sampling 
requirements. For instrince, following remediation activities at a hazardous waste site, one may seek to 
answer “Is the site clean?’ Suppose one attempts to address this question by comparing a mean level from 
samples taken after the remediation with a threshold level (chosen to reflect “safety”). If the threshold level is 
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near background levels that might have existed in the absence of the contamination, then it may be very 
difficult (i.e., require enormous sample sizes) to “prove” that the site is “safe.” This is because the 
concentrations resulting from even a highly efficient remediation under such circumstances would not be 
expected to deviate greatly from such a threshold. A better approach for dealing with this problem may be to 
compare the remediated site with a reference (“uncontaminated”) site, assuming that such a site can be 
determined. 

To avoid excessive expense in collecting and analyzing samples for a contaminant, compromises will 
sometimes be necessary. For instance, suppose that a significance level of 0.05 is to be used; however, the 
affordable sample size may be expected to yield a test with power of only 0.40 at some specified parameter 
value chosen to have practical significance (see section 5.2.3). One possible way that compromise may be 
made in such a situation is to relax the significance level, for instance, using a = 0.10,O. 15, or 0.2’0. By 
relaxing this false positive rate, a higher power (Le., a lower false negative rate p) can be achieved. An 
argument can be made, for example, that one should develop sampling plans and determine sample sizes in 
such a way that both the Type I and Type I1 errors are treated simultaneously and in a balanced manner (for 
example, designing to achieve a = p = 0.15) instead of using the traditional approach of fixing the Type I 
error rate at 0.05 or 0.0 1 and letting p be determined by the sample size. This approach of treating the Type I 
and Type I1 errors simultaneously is taken in the DQO Process and it is recommended that several different 
scenarios of a and p be investigated before a decision on specific values for a and p are selected. 

~ 
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TABLE A-1: CRITICAL VALUES OF STUDENT'S t DISTRIBUTION 

3.078 6.314 
1.886 2.920 
1.638 2.353 
1.533 2.132 
1.476 2.015 

1.440 1.943 
1.415 1.895 
1.397 1.860 
1.383 1.833 
1.372 1.812 

1.363 1.796 
1.356 1.782 
1.350 1.771 
1.345 1.761 
1.34 1.753 

1.337 1.746 
1.333 1.740 
1.330 1.734 
1.328 1.729 

1.725 

Degrees of 
Freedom 

2.447 3.143 
2.365 2.998 
2.306 2.896 
2.262 2.821 
2.228 2.764 

2.201 2.718 
2.179 2.681 
2.160 2.650 
2.145 2.624 
2.131 2.602 

2.120 2.583 
2.110 2.567 
2.101 2.552 
2.093 2.539 
2.086 

.75 

1.000 
0.816 
0.765 
0.741 
0.727 

0.718 
0.71 1 
0.706 
0.703 
0.700 

0.697 
0.695 
0.694 
0.692 
0.691 

0.690 
0.689 
0.688 
0.688 
0.687 

0.686 
0.686 
0.685 
0.685 
0.684 

0.684 
0.684 
0.683 
0.683 
0.683 

0.681 
0.679 
0.677 
0.674 

6 
7 
8 
9 
10 

.80 

1.376 
1.061 
0.978 
0.941 
0.920 

0.906 
0.896 
0.889 
0.883 
0.879 

0.876 
0.873 
0.870 
0.868 
0.866 

0.865 
0.863 
0.862 
0.861 
0.860 

0.859 
0.858 
0.858 
0.857 
0.856 

0.856 
0.855 
0.855 
0.854 
0.854 

0.851 
0.848 
0.845 
0.842 

I 1  
12 
13 
14 
15 

1.963 
1.386 
1.250 
1.190 
1.156 

1.134 
1.119 
1.108 
1.100 
1.093 

1.088 
1.083 
1.079 
1.076 
1.074 

1.071 
1.069 
1.067 
1.066 
1.064 

1.063 
1.061 
1.060 
1.059 
1.058 

- 

- 
16 
17 
18 
19 
20 

1.323 
1.321 
1.319 
1.318 
1.316 

0.553 
0.549 
0.546 
0.543 
0.542 

0.540 
0.539 
0.538 
0:537 
0.536 

0.535 
0.534 
0.534 
0.533 
0.533 

1 
2 
3 
4 ~ 

5 

~ 

21 
22 
23 
24 
25 

0.727 
0.6 17 
0.584 
0569 
0.559 

26 
27 
28 
29 
30 

12.706 
4.303 
3.182 
2.776 
2.571 

40 
60 
120 
m 

3 1.821 
6.965 
4.541 
3.747 
3.365 

1.721 
1.717 
1.714 
1.711 
1.708 

1.706 
1.703 
1.701 
1.699 
1.697 

1.684 
1.671 
1.658 
1.645 

2.080 2.518 
2.074 2.508 
2.069 2.500 
2.064 2.492 
2.060 2.485 

2.056 2.479 2.779 
2.052 2.473 2.771 
2.048 2.467 2.763 
2.045 2.462 2.756 
2.042 2.457 2.750 

2.021 2.423 2.704 
2.000 2.390 2.660 
1.980 2.358 2.617 
1.960 2.326 2.576 

1 - a  

.85 .90 .95 .975 .99 .995 

-~ 
0.532 
0.532 
0.532 
0.53 1 
0.53 1 

0.53 1 
0.53 1 
0.530 
0.530 
0.530 

0.529 
0.527 
0.526 
0.524 

1.058 
1.057 
1.056 
1;055 
1.055 

1.050 
1.046 
1.041 
1.036 

1.325 

1.315 
1.314 
1.313 
1.311 
1.310 

1.303 
1.296 
1.289 
1.282 

2.528 

63.657 
9.925 
5.841 
4.604 
4.032 

3.707 
3.499 
3.355 
3.250 
3.169 

3.106 
3.055 
3.012 
2.977 
2.947 

2.921 
2.898 
2.878 
2.861 
2.845 

2.83 1 
2.819 
2.807 
2.797 
2.787 

Note: The last row of the table ( m degrees of freedom) gives the criticial values for a standard normal distribution (z), 
e.g., t,,,,, = z o.95 = 1.645. 
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TABLE A-2: CRITICAL VALUES FOR THE STUDENTIZED RANGE TEST 

n 

3 
4 
5 

6 
7 
8 
9 
10 

1 1  
12 
13 
14 
15 

16 
17 
18 
19 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 
95 

100 
150 
200 
500 
1000 

Level of Significance a 
0.01 0.05 0.10 

a b a b a b 

1.737 
1.87 
2.02 

2.15 
2.26 
2.35 
2.44 
2.5 1 

2.58 
2.64 
2.70 
2.75 
2.80 

2.84 
2.88 
2.92 
2.96 
2.99 

3.15 
3.27 
3.38 
3.47 
3.55 

3.62 
3.69 
3.75 
3.80 
3.85 

3.90 
3.94 
3.99 
4.02 
4.06 

4.10 
4.38 
4.59 
5.13 

2.000 
2.445 
2.803 

3.095 
3.338 
3.543 
3.720 
3.875 

4.012 
4.134 
4.244 
4.34 
4.44 

4.52 
4.60 
4.67 
4.74 
4.80 

5.06 
5.26' 
5.42 
5.56 
5.67 

5.77 
5.86 
5.94 
6.01 
6.07 

6.13 
6.18 
6.23 
6.27 
6.32 

6.36 
6.64 
6.84 
7.42 

I .758 
1.98 
2.15 

2.28 
2.40 
2.50 
2.59 
2.67 

2.74 
2.80 
2.86 
2.92 
2.97 

3.01 
3.06 
3.10 
3.14 
3.18 

3.34 
3.47 
3.58 
3.67 
3.75 

3.83 
3.90 
3.96 
4.0 1 
4.06 

4.1 1 
4.16 
4.20 
4.24 
4.27 

4.3 1 
4.59 
4.78 
5.47 

1.999 
2.429 
2.753 

3.012 
3.222 
3.399 
3.552 
3.685 

3.80 
3.91 
4.00 
4.09 
4.17 

4.24 
4.3 1 
4.37 
4.43 
4.49 

4.71 
4.89 
5.04 
5.16 
5.26 

5.35 
5.43 
5.5 1 
5.57 
5.63 

5.68 
5.73 
5.78 
5.82 
5.86 

5.90 
6.18 
6.39 
6.94 

I .782 
2.04 
2.22 

2.37 
2.49 
2.59 
2.68 
2.76 

2.84 
2.90 
2.96 
3.02 
3.07 

3.12 
3.17 
3.21 
3.25 
3.29 

3.45 
3.59 
3.70 
3.79 
3.88 

3.95 
4.02 
4.08 
4.14 
4.19 

4.24 
4.28 
4.33 
4.36 
4.40 

4.44 
4.72 
4.90 
5.49 

1, .997 
2.409 
2.712 

2.949 
3.143 
3.308 
3.449 
3.57 

3.68 
3.78 
3.87 
3.95 
4.02 

4.09 
4.15 
4.2 1 
4.27 
4.32 

4.53 
4.70 
4.84 
4.96 
5.06 

5.14 
5.22 
5.29 
5.35 
5.41 

5.46 
5.51 
5.56 
5.60 
5.64 

5.68 
5.96 
6.15 
6.'72 

5.57 7.80 5.79 7.33 5.92 7.1 1 
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TABLE A-3: CRITICAL VALUES FOR THE EXTREME VALUE TEST 
(DIXON'S TEST) 

n 

3 
4 
5 
6 
7 

8 
9 
10 

11 
12 
13 

14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 

Level of Significance a 

0.10 0.05 0.0 1 

0.886 0.941 0.988 
0.679 0.765 0.889 
0.557 0.642 0.780 
0.482 0.560 0.698 
0.434 0.507 0.637 

0.479 0.554 0.683 
0.441 0.5 12 0.635 
0.409 0.477 0.597 

0.517 0.576 0.679 
0.490 0.546 0.642 
0.467 0.521 0.615 

0.492 0.546 0.641 
0.472 0.525 0.61 6 
0.454 0.507 0.595 
0.438 0.490 0.577 
0.424 0.475 0.56 1 
0.4 12 0.462 0.547 

0.401 0.450 0.535 
0.391 0.440 0.524 
0.382 0.430 0.514 
0.374 0.42 1 0.505 
0.367 0.413 0.497 
0.360 0.406 0.489 
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TABLE A-4: CRITICAL VALUES FOR DISCORDANCE TEST 

n 

3 
4 
5 
6 
7 
8 
9 
IO 

1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Level of Si! 

0.01 

1.155 
1.492 
1.749 
1.944 
2.097 
2.221 
2.323 
2.410 

2.485 
2.550 
2.607 
2.659 
2.705 
2.747 
2.785 
2.821 
2.854 
2.884 

2.912 
2.939 
2.963 
2.987 
3.009 
3.029 
3.049 
3.068 
3.085 
3.103 

3.135 
.3.119 

ificance a 

0.05 

1.153 
1.463 
1.672 
1.822 
1.938 
2.032 
2.1 IO 
2.176 

2.234 
2.285 
2.33 1 
2.371 

' 2.409 
2.443 
2.475 
2.504 
2.532 
2.557 

2.580 
2.603 
2.624 
2.644 
2.663 
2.681 
2.698 
2.714 
2.730 
2.745 
2.759 
2.773 

- 

n 

33 
34 
35 
36 
37 
38 
39. 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

- 
Level of Si! 

0.01 

3.150 
3.164 
3.178 
3.191 
3.204 
3.216 
3.228 
3.240 

3.25 1 
3.261 
3.271 
3.282 
3.292 
3.302 
3.310 
3.319 
3.329 
3.336 

ificance a 

0.05 

2.786 
2.799 
2.81 1 
2.823 
2.835 
2.846 " 
2.857 
2.866 

2.877 
2.887 
2.896 
2.905 
2.9 14 
2.923 
2.93 I 
2.940 
2.948 
2.956 
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n 

25 

26 

27 

28 

29 

30 

31 

n 

39 

40 

41 

42 

43 

44 

45 

TABLE A-5: APPROXIMATE CRITICAL VALUES Ar FOR ROSNER'S TEST 

r 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

- - 

r 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

- 

- 

- 

7 

- 

- 

- 

- 

- 
0.05 

2.82 
2.80 
2.78 
2.76 
2.73 
2.59 

- 

2.84 
2.82 
2.80 
2.78 
2.76 
2.62 

2.86 
2.84 
2.82 
2.80 
2.78 
2.65 

2.88 
2.86 
2.84 
2.82 
2.80 
2.68 

2.89 
2.88 
2.86 
2.84 
2.82 
2.71 

2.91 
2.89 
2.88 
2.86 
2.84 
2.73 

2.92 
2.91 
2.89 
2.88 
2.86 
2.76 

- 

- 

- 

- 

- 

- - 

r 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

- 

- 

- 

- 

- 

- 

- 

- 

- 
0.05 

2.94 
2.92 
2.9 1 
2.89 
2.88 
2.78 

2.95 
2.94 
2.92 
2.9 1 
2.89 
2.80 

2.97 
2.95 
2.94 
2.92 
2.91 
2.82 

2.98 
2.97 
2.95 
2.94 
2.92 
2.84 

2.99 
2.98 
2.97 
2.95 
2.94 
2.86 

- 

- 

- 

- 

- 

3.00 
2.99 
2.98 
2.97 
2.95 
2.88 

3.01 
3.00 
2.99 
2.98 
2.97 
2.91 

- 

- 
0.0 1 

3.27 
3.25 
3.24 
3.22 
3.20 
3.09 

3.29 
3.27 
3.25 
3.24 
3.22 
3.1 1 

3.30 
3.29 
3.27 
3.25 
3.24 
3.14 

3.32 
3.30 
3.29 
3.27 
3.25 
3.16 

3.33 
3.32 
3.30 
3.29 
3.27 
3.18 

3.34 
3.33 
3.32 
3.30 
3.29 
3.20 

3.36 
3.34 
3.33 
3.32 
3.30 
3.22 

- 

- 

- 

- 

- 

- 

- 

l 

0.05 

3.03 
3.01 
3 .OO 
2.99 
2.98 
2.91 

- 

3.04 
3.03 
3.01 
3.00 
2.99 
2.92 

3.05 
3.04 
3.03 
3.01 
3.00 
2.94 

3.06 
3.05 
3.04 
3.03 
3.01 
2.95 

3.07 
3.06 
3.05 
3.04 
3.03 
2.97 

- 

- 

- 

3.08 
3.07 
3.06 
3.05 
3.04 
2.98 

3.09 
3.08 
3.07 
3.06 
3.05 
2.99 

- 

- 

- 
0.01 

3.37 
3.36 
3.34 
3.33 
3.32 
3.24 

3.38 
3.37 
3.36 
3.34 
3.33 
3.25 

3.39 
3.38 
3.37 
3.36 
3.34 
3.27 

3.40 
3.39 
3.38 
3.37 
3.36 
3.29 

3.41 
3.40 
3.39 
3.38 
3.37 
3.30 

- 

- 

- 

3.43 
3.41 
3.40 
3.39 
3.38 
3.32 

3.44 
3.43 
3.41 
3.40 
3.39 
3.33 

- 

- 
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n 

46 

47 

48 

49 

50 

60 

n 

70 

80 

90 

100 

150 

200 

TABLE A-5: APPROXIMATE CRITICAL VALUES Ar FOR ROSNER'S TEST 

r 

1 
2 
3' 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

- - 

r 

1 
2 
3 .  
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

1 
2 
3 
4 
5 
10 

- 

- 

- 

- 

- 

- 

- - 

n 

250 

300 

350 

400 

450 

500 

I 

r 

1 
5 
10 

1 
5 
10 

1 
5 
10 

1 
5 
10 

1 
5 
10 

1 
5 
10 

0.05 

3.09 
3.09 
3.08 
3.07 
3.06 
3 .OO 

- 
a 

0.05 

3.67 
3.67 
3.66 

, 

3.72 
3.72 
3.71 

3.77 
3.76 
3.76 

3.80 
3.80 
3.80 

3.84 
3.83 
3.83 

3.86 
3.86 
3.86 

3.10 
3.09 
3.09 
3.08 
3.07 
3.01 

3.1 1 
3.10 
3.09 
3.09 
3.08 
3.03 

3.12 
3.1 1 
3.10 
3.09 
3.09 
3.04 

3.13 
3.12 
3.1 1 
3.10 
3.09 
3.05 

3.20 
3.19 
3.19 
3.18 
3.17 
3.14 

- 

- 

7 

- 

- - 

0.01 

4.04 
4.04 
4.03 

4.09 
4.09 
4.09 

4.14 
4.13 
4.13 

4.17 
4.17 
4.16 

4.20 
4.20 
4.20 

4.23 
4.23 
4.22 

- 
0.0 1 

3.45 
3.44 
3.43 
3.41 
3.40 
3.34 

3.46 
3.45 
3.44 
3.43 
3.41 
3.36 

3.46 
3.46 
3.45 
3.44 
3.43 
3.37 

3.47 
3.46 
3.46 
3.45 
3.44 
3.38 

3.48 
3.47 
3.46 
3.46 
3.45 
3.39 

3.56 
3.55 
3.55 
3.54 
3.53 
3.49 

- 

- 

- 

- 

- 

- 

- - 

- 
0.05 

3.26 
3.25 
3.25 
3.24 
3.24 
3.21 

3.3 1 
3.30 
3.30 
3.29 
3.29 
3.26 

3.35 
3.34 
3.34 
3.34 
3.33 
3.31 

- 

- 

- 

3.38 
3.38 
3.38 
3.37 
3.37 
3.35 

3.52 
3.51 
3.51 
3.51 
3.51 
3.50 

3.61 
3.60 
3.60 
3.60 
3.60 
3.59 

- 

- 

a 

0.01 

3.62 
3.62 
3.61 
3.60 
3.60 
3.57 

3.67 
3.67 
3.66 
3.66 
3.65 
3.63 

3.72 
3.71 
3.71 
3.70 
3.70 
3.68 

3.75 
3.75 
3.75 
3.74 
3.74 
3.72 

3.89 
3.89 
3.89 
3.88 
3.88 
3.87 

3.98 
3.98 
3.97 
3.97 
3.97 
3.96 
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TABLE A-6: QUANTILES OF THE WILCOXON SIGNED RANKS TEST 

n 

4 
5 
6 
7 
8 
9 
10 

1 1  
12 
13 
14 
15 

16 
17 

' 18 
19 
20 

w.0 I w.05 w.10 w.20 

0 0 1 3 
0 1 3 4 
0 3 4 6 
1 4 6 9 
2 6 9 12 
4 9 1 1  15 
6 1 1  15 19 

8 14 18 23 
10 18 22 28 
13 22 27 33 
16 26 32 39 
20 31 37 45 

24 36 43 51 
28 42 49 58 
33 48 56 66 
38 54 63 74 
44 61 70 82 

A - 9  



00 - 
I- - 
W - 
(A 

d - 
m 



TABLE A-8: PERCENTILES OF THE CHI-SQUARE DISTRIBUTION 

V 

1 
2 
3 
4 

5 
6 
7 
8 
9 

I O  
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
50 
60 

70 
80 
90 
100 

.005 

0.04393 
0.0100 

0.072 
0.207 

0.412 
0.676 
0.989. 

1.34 
1.73 

2.16 
2.60 
3.07 
3.57 
4.07 

4.60 
5.14 
5.70 
6.26 
6.84 

7.43 
8.03 
8.64 
9.26 
9.89 

10.52 
11.16 
11.81 
12.46 
13.12 

13.79 
20.71 
27.99 
35.53 

43.28 
51.17 
59.20 
67.33 

.010 

0.0’157 
0.020 1 
0.1 15 
0.297 

0.554 
0.872 

’ 1.24 
1.65 
2.09 

2.56 
3.05 
3.57 
4.1 1 
4.66 

5.23 
5.81 
6.4 1 
7.0 1 
7.63 

8.26 
8.90 
9.54 

10.20 
10.86 

1 1.52 
12.20 
12.88 
13.56 
14.26 

14.95 
22.16 
29.71 
37.48 

45.44 
53.54 
61.75 
70.06 

,025 

0.03982 
- 0.0506 

0.216 
0.484 

0.83 1 
1.24 
1.69 
2.18 
2.70 

3.25 
3.82 
4.40 
5.01 
5.63 

6.26 
6.91 
7.56 
8.23 
8.91 

9.59 
10.28 
10.98 
11.69 
12.40 

13.12 
13.84 
14.57 
15.31 
16.05 

16.79 
24.43 
32.36 
40.48 

48.76 
57.15 
65.65 
74.22 

.os0 

0.02393 
0.103 
0.352 
0.71 1 

1.145 
1.64 
2.17 
2.73 
3.33 

3.94 
3.57 
5.23 
5.89 
6.57 

7.26 
7.96 
8.67 
9.39 

10.12 

10.85 
1 1.59 
12.34 
13.09 
13.85 

14.6 1 
15.38 
16.15 
16.93 
17.71 

18.49 
26.5 1 
34.76 
43.19 

5 1.74 
60.39 
69.13 
77.93 

1 - a  

.IO0 

0.0158 
0.21 1 
0.584 
1.064 

1.61 
2.20 
2.83 
3.49 
4.17 

4.87 
5.58 
6.30 
7.04 
7.79 

8.55 
9.3 1 

10.09 
10.86 
11.65 

12.44 
1 3.24 
14.04 
14.85 
15.66 

16.47 
17.29 
18.1 1 
18.94 
19.77 

20.60 
29.05 
37.69 
46.46 

53.33 
64.28 
73.29 
82.36 

.900 

2.7 1 
4.6 1 
6.25 
7.78 

9.24 
10.64 
12.02 
13.36 
14.68 

15.99 
17.28 
18.55 
19.81 
21.06 

22.3 1 
23.54 
24.77 
25.99 
27.20 

28.41 
29.62 
30.81 
32.01 
33.20 

34.38 
35.56 
36.74 
37.92 
39.09 

40.26 
51.81 
63.17 
74.40 

85.53 
96.58 
107.6 
118.5 

- 

- 

.950 

3.84 
5.99 
7.81 
9.49 

1 I .07 
12.59 
14.07 
15.51 
16.92 

18.31 
19.68 
2 1.03 
22.36 
23.68 

25.00 
26.30 
27.59 
28.87 
30.14 

3 1.41 
32.67 
33.92 
35.17 
36.42 

37.65 
38.89 
40.1 1 
41.34 
42.56 

43.77 
55.76 
67.50 
79.08 

90.53 
101.9 
113.1 
124.3 

- ,975 

5.02 
7.38 
9.35 

11.14 

12.83 
14.45 
16.01 
17.53 
19.02 

20.48 
21.92 
23.34 
24.74 
26.12 

27.49 
28.85 
30.19 
31.53 
32.85 

34.17 
35.48 
36.78 
38.08 
39.36 

40.65 
41.92 
43.19 
44.46 
45.72 

46.98 
59.34 
71.42 
83.30 

95.02 
106.6 
118.1 
129.6 

.990 

6.63 
9.21 

11.34 
13.28 

15.09 
16.8 1 
18.48 
20.09 
21.67 

23.2 1 
24.73 
26.22 
27.69 
29.14 

30.58 
32.00 
33.41 
34.8 1 
36.19 

37.57 
38.93 
,40.29 
41.64 
42.98 

44.3 1 
45.64 
46.96 
48.28 
49.59 

50.89 
63.69 
76.15 
88.38 

100.4 
1 12.3 
124.1 
135.8 

- 
- 
.995 

7.88 
10.60 
12.84 
14.86 

16.75 
18.55 
20.28 
21.96 
23.59 

25.19 
26.76 
28.30 
29.82 
31.32 

32.80 
34.27 
35.72 
37.16 
38.58 

40.00 
41.40 
42.80 
44.18 
45.56 

46.93 
48.29 
49.64 
50.99 
52.34 

53.67 
66.77 
79.49 
9 1.95 

104.2 
116.3 
128.3 
140.2 - - 

P 
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TABLE A-9: PERCENTILES OF THE F DISTRIBUTION 

Degrees Degrees of Freedom for Numerator 
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TABLE A-9: PERCENTILES OF THE F DISTRIBUTION 

I 
Degrees 
Freedom 

for 
Denom- 
inator 
7 .50 

.90 

.95 
,975 
.99 

,999 
8 .SO 

.90 

.95 
,975 
.99 

,999 
9 .50 

.90 

.95 
.975 

.99 
,999 

10 .50 
.90 
.95 

,975 
.99 

,999 
12 S O  

.90 

.95 
,975 

.99 
,999 

15 .50 
.90 
.95 

,975 
.99 

,999 

1 

0.506 
3.59 
5.59 
8.07 
12.2 
29.2 

0.499 
3.46 
5.32 
7.57 
11.3 
25.4 

0.494 
3.36 
5.12 
7.21 
10.6 
22.9 

0.490 
3.29 
4.96 
6.94 
10.0 
21.0 

0.484 
3.18 
4.75 
6.55 
9.33 
18.6 

0.478 
3.07 
4.54 
6.20 
8.68 
16.6 

EPA QNG-9 

4 

0.926 
2.96 
4.12 
5.52 
7.85 
17.2 

0.915 
2.81 
3.84 
5.05 
7.01 
14.4 

0.906 
2.69 
3.63 
4.72 
6.42 
12.6 

0.899 
2.61 
3.48 
4.47 
5.99 
11.3 

0.888 
2.48 
3.26 
4.12 
5.41 
9.63 

0.878 
2.36 
3.06 
3.80 
4.89 
8.25 

5 

0.960 
2.88 
3.97 
5.29 
7.46 
16.2 

0.948 
2.73 
3.69 
4.82 
6.63 
13.5 

0.939 
2.61 
3.48 
4.48 
6.06 
11.7 

0.932 
2.52 
3.33 
4.24 
5.64 
10.5 

0.921 
2.39 
3.11 
3.89 
5.06 
8.89 

0.911 
2.27 
2.90 
3.58 
4.56- 
7.57 

2 

,0767 
3.26 
4.74 
6.54 
9.55 
21.7 

0.757 
3.11 
4.46 
6.06 
8.65 
18.5 

0.749 
3.01 
4.26 
5.71 
8.02 
16.4 

0.743 
2.92 
4.10 
5.46 
7.56 
14.9 

0.735 
2.81 
3.89 
5.10 
6.93 
13.0 

0.726 
2.70 
3.68 
4.77 
6.36 
11.3 

Degrees of Freedom for Numerator 

3 

0.871 
3.07 
4.35 
5.89 
8.45 
18.8 

0.860 
2.92 
4.07 
5.42 
7.59 
15.8 

0.852 
2.81 
3.86 
5.08 
6.99 
13.9 

0.845 
2.73 
3.71 
4.83 
6.55 
12.6 

0.835 
2.61 
3.49 
4.47 
5.95 
10.8 

0.826 
2.49 
3.29 
4.15 
5.42 
9.34 

0.983 
2.83 
3.87 
5.12 
7.19 
15.5 

0.971 
2.67 
3.58 
4.65 
6.37 
12.9 

0.962 
2.55 
3.37 
4.32 
5.80 
11.1 

0.954 
2.46 
3.22 
4.07 
5.39 
9.93 

0.943 
2.33 
3.00 
3.73 
4.82 
8.38 

0.933 
2.21 
2.79 
3.41 
4.32 
7.09 

- 

- 

- 

- 

- 

- 

1.02 1 1.03 
2.72 2.70 
3.68 3.64 
4.82 4.76 
6.72 6.62 
14.5 14.1 
1.01 1.02 
2.56 2.54 
3.39 3.35 
4.36 1 4.30 
5.91 5.81 
11.8 11.5 
1.00 1.01 
2.44 2.42 
3.18 3.14 
4.03 3.96 
5.35 5.26 - 10.1 9.89 

0.992 1.00 
2.35 2.32 
3.02 2.98 
3.78 3.72 
4.94 4.85 
8.96 8.75 

0.981 0.989 
2.21 2.19 

2.75 :::: ~ 3.37 
4.39 4.30 
7.48 7.29 

0.970 0.977 
2.09 2.06 
2.59 2.54 
3.12 3.06 
3.89 3.80 
6.26 6.08 

- 

- 

7 

- 

- 

1.00 
2.78 
3.79 
4.99 
6.99 
15.0 

0.988 
2.62 
3.50 
4.53 
6.18 
12.4 

0.978 
2.51 
3.29 
4.20 
5.61 
10.7 

0.971 
2.41 
3:14 
3.95 
5.20 
9.52 

0.959 
2.28 
2.91 
3.61 
4.64 
8.00 

0.949 
2.16 
2.71 
3.29 
4.14 
6.74 

7 

- 

- 

- 

- 

- 

1.04 
2.67 
3.57 
4.67 
6.47 
13.7 
1.03 
2.50 
3.28 
4.20 
5.67 
11.2 
1.01 
2.38 
3.07 
3.87 
5.11 
9.57 
1.01 
2.28 
2.91 
3.62 
4.71 
8.45 
1.00 
2.15 
2.69 
3.28 
4.16 
7.00 

0.989 
2.02 
2.48 
2.96 
3.67 
5.81 

1.01 
2.75 
3.73 
4.90 
6.84 
14.6 
1 .oo 
2.59 
3.44 
4.43 
6.03 
12.0 

0.990 
2.47 
3.23 
4.10 
5.47 
10.4 

0.983 
2.38 
3.07 
3.85 
5.06 
9.20 

0.972 
2.24 
2.85 
3.51 
4.50 
7.71 

0.960 
2.12 
2.64 
3.20 
4.00 
6.47 

- 

- 

- 

- 

- 

- 
A -  13 

- 
15 

1.05 
2.63 
3.5 1 
4.57 
6.3 1 
13.3 
1.04 
2.46 
3.22 
4.10 
5.52 
10.8 
1.03 
2.34 
3.01 
3.77 
4.96 
9.24 
1.02. 
2.24 
2.84 
3.52 
4.56 
8.13 
1.01 
2.10 
2.62 
3.18 
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TABLE A-9: PERCENTILES OF THE F DISTRIBUTION 

Degrees Degrees of Freedom for Numerator 
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TABLE A-1 1 : PROBABILITIES FOR THE SMALL-SAMPLE MANN-KENDALL TEST FOR TREND 
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APPENDIX B: REFERENCES 

This appendix provides references for the topics and procedures described in this document. The 
references are broken into three groups: Primary, Basic Statistics Textbooks, and Secondary. This 
classification does not refer in any way to the subject matter content but to the relevance to the intended 
audience for this document, ease in understanding statistical concepts and methodologies, and accessability to 
the non-statistical community. Primary references are those thought to be of particular benefit as hands-on 
material, where the degree of sophistication demanded by the writer seldom requires extensive training in 
statistics; most of these references should be on an environmental statistician's bookshelf. References to 
specific chapters within the primary references are provided in Table B-1 (at the end of this appendix) for 
each specific topic. Secondary references are original research works, theoretical discussions or expositions, 
or methodologies needing further development before being immediately adaptable to environmental 
problems. References for original research works are listed in Table B-2 (at the end of this appendix) for 
topics described in this guidance. Users of this document are encouraged to send recommendations on 
additional references to the address listed in the Foreword. 

Some sections within the chapters reference materials found in most introductory statistics books. 
This document uses Walpole and Myers (1 985), Freedman, Pisani, Purves, and Adhakari (1991), Mendenhall 
(1 987), and Dixon and Massey (1 983). Table B-1 (at the end of this appendix) lists specific chapters in these 
books where topics contained in this guidance may be found. This list could be extended much further by use 
of other basic textbooks; this is acknowledged by the simple statement that further information is available 
from introductory text books. 

Some important books specific to the analysis of environmental data include: Gilbert (1 987), an 
excellent all-round handbook having strength in sampling, estimation, and hot-spot detection; Gibbons 
(1994), a book specifically concentrating on the application of statistics to groundwater problems with 
emphasis on method detection limits, censored data, and the detection of outliers; and Madansky (1 988), a 
slightly more theoretical volume with important chapters on the testing for Normality, transformations, and 
testing for independence. In addition, Ott (1 995) describes modeling, probabilistic processes, and the 
Lognormal distribution of contaminants, and Berthouex and Brown (1994) provide an engineering approach 
to problems including estimation, experimental design and the fitting of models. 

B.l CHAPTER1 

Chapter 1 establishes the framework of qualitative and quantitative criteria against which the data 
that has been collected will be assessed. The most important feature of this chapter is the concept of the test 
of hypotheses framework which is described in any introductory textbook. A non-technical exposition of 
hypothesis testing is also to be found in U.S. EPA (1 994a, 1994b) which provides guidance on planning for 
environmental data collection. 

A full discussion of sampling methods with the attendant theory are to be found in Gilbert (1 987) 
and a shorter discussion may be found in U.S. EPA (1 989). Cochran (1966) and Kish (1 965) also provide 
more advanced theoretical concepts but may require the assistance of a statistician for full comprehension. 
More sophisticated sampling designs such as composite sampling, adaptive sampling, and ranked set 
sampling, will be discussed in future Agency guidance. 
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B.2 CHAPTER2 

1\00 

Standard statistical quantities and graphical representations are discussed in most introductory 
statistics books. In addition, Berthouex & Brown (1994) and Madansky (1988) both contain thorough 
discussions on the subject. There are also several textbooks devoted exclusively to graphical representations, 
including Cleveland (1 993), which may contain the most applicable methods for environmental data, Tufie 
(1 983), and Chambers, Cleveland, Kleiner and Tukey (1983). 

Two EPA sources for temporal data that keep theoretical discussions to a minimum are U.S. EPA 
( I  992a) and U.S. EPA (1 992b). For a more complete discussion on temporal data, specifically time series 
analysis, see Box and Jenkins (1 970), Wei (1 990), or Ostrum (1 978). These more complete references 
provide both theory and practice; however, the assistance of a statistician may be needed to adapt d e  
methodologies for immediate use. Theoretical discussions of spatial data may be found in Joumel and 
Huijbregts (1 978), Cressie (1 993), and Ripley (1 981). 

B.3 CHAPTER3 

The hypothesis tests covered in this edition of the guidance are well known and straight-forward; 
basic statistics texts cover these subjects. Future editions of this guidance will expand on these tests to 
include: tests for the mean of skewed distributions, tests for data from ranked set samples, and t-tests for 
winsorized or trimmed data. 

Besides basic statistical text books, Berthouex & Brown (1994), Hardin and Gilbert (1993), and 
U.S. EPA (1 989, 1994c) may be useful to the reader. In addition, there are some statistics books devoted 
specifically to hypothesis testing, for example, see Lehmann (1991). These books may be too theoretical for 
most practitioners, and their application to environmental situations may not be obvious. 

The statement in this document that the sign test requires approximately 1.225 times as many 
observations as the Wilcoxon rank sum test to achieve a given power at a given significance level is 
attributable to Lehmann (1 975). 

B.4 CHAPTER4 

This chapter is essentially a compendium of statistical tests drawn mostly from the primary 
references and basic statistics textbooks. Gilbert (1987) and Madansky (1 988) have an excellent collection 
of techniques and U.S. EPA (1992a) contains techniques specific to water problems. 

For Normality (section 4.2), Madansky (1988) has an excellent discussion on tests as does Shapiro 
(1986). For trend testing (section 4.3), Gilbert (1987) has an excellent discussion on statistical tests and U.S. 
EPA (1 992b) provides adjustments for trends and seasonality in the calculation of descriptive statistics. 

There are several very good textbooks devoted to the treatment of outliers (section 4.4). Two 
authoritative texts are Bamett and Lewis (1 978) and Hawkins (1980). Additional information is also to be 
found in Beckman and Cook (1983) and Tietjen and Moore (1972). Several useful software programs are 
available on the statistical market including U.S. EPA's GEO-EASE and Scout, both developed by the 
Environmental Monitoring Systems Laboratory, Las Vegas, Nevada and described in U.S. EPA (1 991) and 
U S .  EPA (1993b), respectively. 
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Tests for dispersion (section 4.5) are described in the basic textbooks and examples are to be found 
in U.S. EPA ( 1  992a). Transformation of data (section 4.6) is a sensitive topic and thorough discussions may 
be found in Gilbert (1 987), and Dixon and Massey (1 983). Equally sensitive is the analysis of data where 
some values are recorded as non-detected (section 4.7); Gibbons (1994) and U.S. EPA (1992a) have relevant 
discussions and examples. 

B.5 CHAPTER5 

Chapter 5 discusses some of the philosophical issues related to hypothesis testing which may help in 
understanding and communicating the test results. Although there are no specific references for this chapter, 
many topics (e.g., the use of p-values) are discussed in introductory textbooks. Future editions of this 
guidance will be expanded by incorporating practical experiences from the environmental community into 
this chapter. 
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at RCRA Facilities. EPA/530/R-93/003.' Office of Solid Waste. (NTIS: PB89-15 1026) 
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Dixon, W.J., and F.J. Massey, Jr., 1983. Introduction to Statistical Analysis(Fourth Edition). McGraw-Hill, New York, NY. 
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Table B-1: Selected References from Primary and Introductory Textbooks (Continued) 

Subject 

Levene's Test 

Trimmed Mean & Winsorization 

Section Source (with Chapter) 

4.5.4 EPA (1992a) 1.2 

4.7.2 Dixon & Massey 16-4 

11 Cohen's Adjustment I 4.7.2 I EPA (1 992a) 8.1.3 II 

Subject 

Profiles 

Stars 

Glyphs 

I' I I '1 

Section . ' Source 

2.3.7 Wang (1978) 

2.3.7 

2.3.7 Kleiner and Hartigen (1981) 

Siegel, Goldwyn and Friedman (1971) 

Parallel Coordinate Plots 

W-test 

D' Agostino's Test 

Royston's Test 

Filliben's Statistic 

Geary's Test 

Studentized range test 

Kolmogorov-Smirnoff Test 

Lilliefors K-S Test 

Sen's Slope Estimator 

Extreme Value Test 

Discordance Test 

Rosner's Test 

2.3.7 Wegman (1990) 

4.2.2 

4.2.3 D'Agostino (1971) 

4.2.3 Royston (1 982) 

4.2.3 Filliben (1975) 

4.2.6 Geary (1935, 1947) 

4.2.6 

4.2.7 Conover (1 980) 

4.2.7 Lilliefors (1967, 1969) 

4.3.3 Sen (1968a, 1968b) 

4.4.3 Dixon (1953) 

4.4.4 Grubbs (1 969) 

4.4.5 Rosner (1975) 

Shapiro and Wilk (1  965 ) 

David, Hartley, and Pearson (1954) 

Walsh's Tests I 4.4.6 I Walsh (1958 and 1950) 

Bartlett's Test 

Cohen's Method 

~~ ~ ~ ~~~ ~~~ ~ ~ 

4.5.3 

4.7.2 Cohen (1959) 

Dixon and Massey (1983 ) 
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